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Abstract. We propose a new physiologically-based outflow boundary condition for hemodynam-
ics under general transient regimes. This is in contrast to previous studies that impose restrictions
of temporal periodicity. The new condition is analyzed and its numerical implementation is dis-
cussed in detail. We show that existing impedance boundary conditions can be viewed as numerical
approximations of the new condition. Our study provides a partial justification for using some of
these existing conditions beyond the periodic problems for which they were designed. Moreover, the
new condition has better stability properties. The theoretical results are illustrated by numerical
experiments pertaining to cerebral blood flow.
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1. Introduction. The complexity and size of human vasculature prevent the di-
rect application of high fidelity mathematical models to the whole system. A common
approach is to choose a small subset of arteries to model in detail, while accounting for
the remainder of the vasculature through boundary conditions. This paper pertains
to arterial—as opposed to venous—hemodynamics. Consequently, the inflow vessels,
i.e., the inlets at the boundary of the computational domain, tend to be few in number
and of significant size such as, for instance, the major cerebral arteries. By contrast,
the outflow vessels, i.e., the outlets at the boundary of the computational domain, are
smaller and more numerous. While it is feasible to impose, say, measured velocities on
a few inflow vessels, it is impractical to do so on outflow vessels. In fact, discovering
the behavior at the outlets is often the very aim of numerical hemodynamic studies
[3, 24, 36].

We concentrate on outflow boundary conditions for one-dimensional formulations
for two reasons. First, for several medical applications, a simple one-dimensional
formulation may provide as much useful information as significantly more complex
and computationally demanding full three-dimensional computations [13]. One-
dimensional models have, for instance, been validated against data in [1, 5, 9, 10,
24, 27, 31]. Second, some boundary conditions for three-dimensional models can be
derived and implemented from lower dimensional formulations [36]. In other words,
the type of boundary conditions derived here may be useful for higher-dimensional
models as well.

Several popular outflow boundary conditions for hemodynamics are based on an
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electrical circuit analogy where blood pressure is thought of as voltage and flowrate as
current. Such conditions include the pure resistor condition [29, 35], the three-element
Windkessel model [2, 3, 10, 26, 28], and their variations. While these methods have
been successfully used and do not require any periodicity assumptions, they are not
physiologically based. Additionally, they are sensitive to internal resistances and
capacitances that cannot be directly measured. These parameters have to be fitted
for each specific patient to generate accurate model output [10, 14, 15, 16, 17].

Impedance boundary conditions are another type of outflow boundary condi-
tion for hemodynamics. The idea consists of evaluating, for each outflow vessel, the
impedance corresponding to the presence of an entire vascular tree downstream from
the edge of the computational domain. This procedure [22, 23, 24] relies on simplify-
ing assumptions about both the nature of the flow (section 2.1) and the geometrical
and topological structures of the tree (section 2.2). It combines an algorithm to
compute the impedance of a vascular network [33] with linear wave theory [37, 38].
This approach is used, for instance, in [6, 8, 18, 30, 32, 34]. In [9], we derived an
impedance boundary condition that is much simpler than, but similar to, Olufsen’s
[22, 23, 24]. All of these various incarnations of impedance boundary conditions have
the advantage of being—at least to some extent—physiologically based. Their major
shortcoming stems from the assumption of strict flow periodicity, which does not hold
in many physiologically relevant conditions.

In this paper, we construct an impedance boundary condition that is valid for
general transient flows. The main idea is to replace the Fourier series-based approach
of [9, 22, 23, 24] by Laplace transforms (section 2). The method is implemented
numerically in section 3 through a convolution quadrature approach [19, 20]. We
discuss numerical experiments in section 5. We show that Laplace and Fourier series-
based impedance conditions are similar since the Fourier series-based case is roughly
an approximation of the more general Laplace case. The results from section 5 are
supported by mathematical analysis results in section 4 and in the appendices.

2. Derivation of the method.

2.1. Single vessel equations. Consider flow in an elastic axisymmetric cylin-
drical vessel of radius R and length L. The incompressible Navier—Stokes equations
are taken to be valid and are expressed in cylindrical coordinates. The flow itself is
assumed to inherit the axial symmetry of the vessel and to present no “swirl,” i.e.,
the angular component of the velocity is zero. Effects due to gravity are neglected.
The position along the longitudinal axis is « and 7 measures the distance from that
axis. We take the following Ansatz for the longitudinal velocity:

(2.1) uﬁﬂaﬂ:Z%EU@jﬂl—<Réﬁ)q,

where U is the cross-sectional average of the longitudinal velocity, and the fitting
parameter v > 0 is to be estimated. Note that v = 2 corresponds to the classical
Poiseuille flow.

The resulting equations are then averaged on cross-sections, leading to the one-
dimensional formulation [7, 9, 10, 11, 28]

(2.2) DA + 0,Q = 0,

v+2 Q? A o HQ
(23) 8tQ+m I(Z +;8zP_ 27T(")/+2)pA,
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where A = 7R? is the cross-sectional area, Q = AU is the flowrate, and p and p are
the (constant) viscosity and density of blood, respectively. The system is closed by
assuming the wall to be thin and linearly elastic with a Poisson ratio of 1/2 [4]. The
resulting constitutive law for the pressure P is

4Eh [ Ag
(2'4) P_PO—%<1— 7);

where Ao = 773 is a characteristic value of the cross sectional area of the unstressed
vessel and F and h are the Young modulus and thickness of the vessel wall, respec-
tively [23]. Finally, assuming small amplitude fluctuations, the system (2.2)—(2.4) is
linearized in A around Ay, resulting in

(2.5) CoP+0,Q =0,
Ag p Q
2.6 0hQ + — 0, P=2m(y+2) = —,
(2.) Q-+ (b=
where C' = dA/dP is the vessel compliance.
Instead of expressing the above unknowns in terms of their Fourier coefficients, as

done in [9, 22, 23, 24, 32] among others, we take the Laplace transform of the system
with respect to time. Assuming zero initial pressure and flow, we get

(2.7) CsP+0,Q=0,
(2.8) (s+0)Q + % 0, P =0,

where s is a generic complex number, P = £L(P), Q = £(Q), and § = 2u(y + 2)/
(pr3). The solutions to (2.7) and (2.8) evaluated at z = 0 are

Q(0, s) = sd,CP(s, L)sinh <d£> + Q(s, L) cosh (d£> 7

s A L IS . L
P(O, S) = P(S,L) cosh <d_s) + w@(s,l}) sinh (d—8> s

with d2 = Ay /[Cps(s + 9)]. Defining the impedance through its Laplace transform

(2.9) Z(w,s) =

yields

R Z L,s + — tanh L/d,
(2.10) Z(0,s) = ( A) 2d:C / :
sdsC Z(L,s)tanh L/dg + 1

The above formula links the impedance at the beginning of the vessel to the impedance
at its end. For s restricted to the imaginary axis, i.e., s = iw, w € R, (2.10) corre-
sponds to the impedance found in [9] (see relation (13)) where Fourier series were
used.
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2.2. Generalization to structured vascular trees. Vascular trees are as-
sumed to share the following structure:
1. Vessels end by bifurcating into two daughter vessels; vessels with radii smaller
than a minimal value 7,,;, > 0 terminate, i.e., they do not bifurcate.
2. There are two parameters a and § where 0 < f < « < 1 and for any
parent/daughter vessels

Tq1 = arp, and 12 = PBrypg,

where 7,4, rq1, and rq2 are the radii of the parent/daughter vessels, respec-
tively.
3. There is a positive parameter A such that for any vessel in the tree

A=r/L.

These assumptions are classical in the field; see, for instance, [23]. The existence
of the scaling factors ensures that the number of different size vessels grows only
quadratically with the number of generations, instead of exponentially as would be
the case for a general tree [9]. The scaling parameters «, (3, and A can be determined
from data; see Table 5.3 and [23, 24]. The choice of 7, is more delicate [9] and is
the object of current work. Validation studies of the classical “periodic” impedance
condition can be in found in [9, 24, 31].

We follow [9, 22, 23, 24, 32] to compute the impedance of the entire tree by
noting that (2.9), together with continuity of pressure and conservation of mass at
each junction, leads to

(2.11) - ! = — + = for any s.

Zpa(L,s)  Zq1(0,8)  Zg2(0,s)

The impedances at the ends (x = L) of all terminal vessels are assumed to share
a common constant value Zterm, which is usually set to Zierm = 0 [9, 23, 24]. For
any s, a value for the impedance of the root vessel is obtained by recursively applying
relations (2.10) and (2.11).

2.3. Algorithm to compute the impedance. Sections 2.1 and 2.2 describe
how to compute Z (s) for a structured tree. We give a recursive algorithm for per-
forming this task. In the following, the function “singleVessellmp” denotes (2.10).

procedure IMPEDANCE
Input: r — radius of vessel
Output: ZPA 0
if r < rpi, then
ZPAL = Zterm
else
ZD1 = IMPEDANCE(« - 1),
ZD2 = IMPEDANCE(g - r),
ZPAL=Z7D1-ZD2/(ZD1+ ZD2),
end if
ZPAO = singleVessellImp(ZPA_L)
end procedure

The above algorithm is not optimal as it contains redundant evaluations of the
impedance. For example, one will separately compute the impedance corresponding
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to afr and Bar even though these values are the same. A more efficient approach,
described in [24], is to record previously computed values of the impedance to avoid
repeating calculations.

3. Numerical implementation. Using the construction described in section 2,
we compute the Laplace transform of the impedance corresponding to a given tree.
To use this result as a boundary condition in a major vessel, we note that (2.9) implies

(3.1) P(t):/o Z2()Q(t — 7) dr.

where all quantities are evaluated at the end of the outflow vessel' and Z = £71(Z).

To evaluate (3.1), we use a convolution quadrature approach (CQA) [19] which
utilizes the values of the Laplace transform Z = £(Z) rather than the values of Z.
This allows us to avoid entirely the delicate numerical inversion of the Laplace trans-
form [25] to go from Z, computed in section 2, to Z, which we cannot access directly.
Furthermore, convolution quadrature methods are provably convergent even in the
case when the inverse Laplace transform of Z only exists in a weak sense [21].

3.1. Convolution quadratures. For the sake of completeness, the CQA is
summarized below in the present context. Applying Mellin’s inversion formula, we
obtain

1 v+io00

(3.2) Z(t) = / Z(N)eM d,

21 S, _ino

where the integration is taken along the vertical line Re(\) = v with v being greater
than the real part of all singularities of Z. An analysis of the locations of the sin-
gularities of Z is provided in section 4. The CQA [19] consists of substituting (3.2)
into (3.1),

v+io00 t
3.3)  Plt) = — / ZO0y(x: ) d), y(/\;t):/Oe)‘tQ(t—T)dT

B % — 100
and observing that y is the unique solution to the initial value problem
(3.4) Y= +Q,  y(0)=0.

The next step in the CQA is to apply a multistep method to (3.4) and to approximate
P(nAt) by replacing y the integral (3.3) with

k k
(3.5) Z QjYntj—k = AtZﬁj()‘yn-Fj—k +Q((n+j — k)At)),
=0 =0
where At is the time step size and the parameters o; and §; (j = 0,...,k) are

the coeflicients of the chosen multistep method. Even after approximating y by a
multistep method, it is challenging to directly evaluate the improper integral in (3.3)
numerically. The remaining analysis, also from [19], recasts this integral into a more
computationally appealing form.

IThe end of the outflow vessel is the beginning (x = 0) of the root vessel of the tree. From here
on and for the sake of simplicity, we omit explicit mention of the spatial variables.
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Consider the formal expansions

Y(Q) =D ya¢" and Q(() = > Q(nAt)(".

n=0 n=0
Multiplying (3.5) by ¢ and summing yields
29

-1 - aoC" + -+ ag
(3.6) Y(¢) = (W - A) QQ),  where 2(Q) = 5 5,

Evaluating (3.3) at discrete times nAt (n =0,1,...), we consider an expansion of P
similar to (3.6),

[e%s) V4100 R
SR == [ 20
n=0 V—100
1 v+1i00 R = -1
— [ () e

where P, is the approximation of (3.3) obtained by approximating y by (3.5). Cauchy’s
integral formula leads to

- - (E(9)
HZ:O ( At )

We then expand 7 as

5 E(g) _ = n — L 7 w —n—1
38) 7 (E) =3 2" oz = 5 C_TZ( A )C dc,

n=0

so that (3.7) becomes

S PLM=D ("D QnAtC™.
n=0 n=0 n=0

Equating the like powers of ¢, we approximate the pressure P by

(3.9) P(nAt) ~ Py =Y 2, ;Q(jA).

J=0

During a simulation, (3.9) is enforced at the end of each outflow vessel.

It remains to compute the weights z,,, n = 0,..., N, where N is the total number
of time steps. Following [20], this can be efficiently done through a trapezoidal rule
approximation of the Cauchy integral in (3.8). More precisely, we approximate z, by

—n M—1 = im2m /M ]
(310) Zn = TW Z VA <%> e—zanﬂ-/M7
m=0

where M is the number of quadrature points. The Z,’s can be computed simultane-
ously using FF'T; this requires M evaluations of Z and O(M log M) arithmetical oper-
ations. If Z is computed with an accuracy of O(e), one may compute z,, n =0,..., N
with accuracy O(y/€) by choosing M = N and rV = /e [20]. For safety, we typically
take M = 2N. We set € = 10719, but nearly identical results were obtained for € rang-
ing from 1076 to 10713, In our numerical simulations, we use Z(¢) = ¢%/2 —2( +3/2,
which corresponds to the second order backward differentiation formula.
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3.2. Impedance implementation algorithm. The algorithm for computing
the impedance weights z,, with the CQA is as follows.

procedure IMPEDANCEWEIGHTS
Input:
t¢; = final simulation time,
At = time step size,
N = number of time steps (N = ty/At),
¢ = accuracy of computation of Z
Output:
impedance weights z,, n =0,..., N
M =2N,
r— ¢l/2N
form=0: M —1do
g _ ,r,eiZTrm/M’
E=3¢2-20+3
Zm = 7 (2/At)
end for
for n = 0 N do
2 = M ZM 1 Z(m —i2wmn/M
end for
end procedure

We compute the impedance weights for each outflow vessel prior to running a sim-
ulation; this requires 2N evaluations of Z per outflow vessel. The periodic structured
tree condition requires Np evaluations of the impedance, where Np is the number of
time steps per period. In most practical cases, IV is a small multiple of N7 and the
costs of both conditions are comparable.

The evaluation of Z is done directly and requires a few thousand floating point
operations for the vascular trees considered here. One evaluation corresponds to O(¢2)
floating point operations, where ¢ is the number of generations in the structured tree.
Typically, £ is no more than 30. Both boundary conditions can thus be implemented at
very low cost. Impedance boundary conditions on networks with many outlets and/or
long time integration may require access to a large number of computed values.

4. Singularities of the Laplace transform of impedance. The location
of the singularities of the Laplace transform of the impedance plays a critical role
in the implementation of the general structured tree boundary condition. For in-
stance, the CQA requires the existence of a real number v such that for any singu-
larity s*, #8s* < v. Additionally, locations of the singularities of Z (s) play a critical
role in section 5, where we compare the general condition to the original, periodic
version. Unfortunately, characterizing the singularities of Z(s) is not trivial since the
impedance is only defined algorithmically as a repeated composition of (2.10) and
(2.11). However, by analyzing the properties of the maps (2.10) and (2.11) individu-
ally, we prove that the impedance has only one singularity with nonnegative real part:
a removable singularity at s = 0.

THEOREM 4.1. If the terminal impedance Zierm has nonnegative real part, i.e.,
%Zterm > 0, then the Laplace transform of the impedance of the structured tree, as
defined in section 2, has no singularities for any s such that Rs >0, s 0. There is
a removable singularity at s = 0.

Proof. The Laplace transform of the impedance is a repeated composition of
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the maps (2.10) and (2.11). Its possible singularities can be differentiated into seven
different cases:
Singularities of (2.10)

1. s=0.

2. dg =0or s=—9.

3. For some vessel in the tree, s(s + 0) is not in the region of analyticity of the

square root function.
4. L/ds is a singularity of tanh.
5. sdsCtanh(L/d)Z(s,L) +1 = 0.

Singularities of (2.11)

6. Z(s,0) =0. ) )
7. For some junction in the tree, Zg1(s,0) = —Zga(s,0).
The proof consists of eliminating all the above cases (see Appendix A). O

5. Connection to periodic version of structured tree. We investigate how
our general structured tree boundary condition compares with the original bound-
ary condition, which assumes periodicity in time. In section 5.1, we show that for
flow regimes that are periodic, both boundary conditions yield the same solution.
Furthermore, we have found that even in nonperiodic regimes, the two boundary con-
ditions give startlingly similar results. An explanation for this phenomenon is given
in section 5.2.

5.1. Comparison for periodic flows. If P and @ are periodic with period T,
then

Pliwy) _ S P(t)ertdt B
Qliwy) [V Qt)e~iwrtdt  Qk

where P(iwy,) and Q(iwy,) denote the Laplace transforms of pressure and flowrate eval-
uated at iwy with wy = 27k/T, and Pk and Qk are the respective Fourier coefficients
of P and Q.

Furthermore, the Laplace transform of the impedance satisfies Z(iwy) = Zi,
where Zj, denotes the kth Fourier coefficient of the impedance [9]. For periodic flow
and pressure, enforcing Z(s) = P(s)/Q(s), as is done in the general structured tree
condition derived in this paper, implies Z = P, / Qk, meaning the periodic boundary
condition is also satisfied. Thus, in a simulation with periodic inflow velocity data, one
obtains the same solution from the periodic structured tree boundary condition and
our general structured tree condition (neglecting the effects of discretization error).

5.2. Comparison for nonperiodic flows. Both the periodic and general struc-
tured tree conditions express the pressure as a dot product (discrete convolution) of
flow-rate history with impedance weights zy,

n

(5.1) P(nAt) =Y zQ((n — ()At).

£=0

For the general condition, the impedance weights are determined through the CQA
applied to the Laplace transform of the impedance in (3.10). For the periodic condi-
tion, the weights are determined by an inverse discrete Fourier transform of values of
Zi & P./Qp, where Zj are computed in a manner analogous to Z(s) (see [9] for full
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details). Explicitly, the impedance weights for the periodic condition are

At —(Nr-1/2 5 i
(5.2) 20 = i k:T—(NT_l)/Q ZpelwrtAt for ¢ < Nr,
0 for £ > N,

where wy = 27k /T with T being the assumed period of P and Q. N7 is the number
of time steps per period, so zy = 0 for £ > Np as the periodic condition considers only
flow-rate history over the previous period.

Although the derivation of the periodic structured tree condition requires the
pressure and flowrate to be periodic in time, the resulting numerical implementation,
(5.1), in no way forces the solution to be periodic. Therefore, it is possible to apply the
periodic structured tree boundary condition to any type of flow even in the absence
of any justification for doing so. We compare this approach to the general structured
tree boundary condition developed in this paper. Figure 5.1 displays the weights
generated by each condition for the left posterior cerebral artery in the Circle of
Willis, a ring-like structure of arteries in the human brain. Details about the Circle
of Willis and parameter values used to generate these weights are given in section 5.4.

50 60

Fic. 5.1. Comparison of the impedance weights generated by the periodic (blue (in the elec-
tronic version) solid curve) and general (red (in the electronic version) dashed curve) structured
tree boundary conditions.

The similarity of the weights for both methods suggests that solutions obtained by
using either boundary condition may be similar, even for nonperiodic problems. This
hypothesis is tested via numerical experiments in the Circle of Willis. We consider
experiments with three different velocities applied to the inflowing vessels:
Experiment 1. Raw, quasi-periodic measured velocity data.

Experiment 2. The raw data in experiment 1 that have been averaged and made
periodic with period 1 second.

Experiment 3. The periodic data from experiment 2 is used in all vessels except the
left internal carotid artery, whose inflow velocity undergoes a rapid 50% de-
crease beginning at ¢ = 2.

The velocity for each experiment is displayed in Figure 5.2. Section 5.4 con-
tains additional technical details on these simulations, such as discretization scheme,
parameter values, network description, and how the velocity data was obtained.
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Fi1c. 5.2. Inflow velocity curves for the left internal carotid for each of the three numerical
experiments.

For each simulation, we measure the difference between the periodic and general
structured tree solutions by computing the L? norm of the difference between the two
solutions at each spatial point for both state variables (A and Q). The solutions at
the spatial point in the Circle of Willis with the largest difference are displayed in
Figure 5.3. As expected from the proximity of the weights, the solutions obtained by
the two methods are remarkably similar.

The similarity between the periodic and general conditions is not coincidental.
We now show that the numerical implementation of the periodic condition may be
viewed as a rough approximation of the general condition Z(s) = P(s)/Q(s). Crucial
to this argument is the central result of section 4, which states that Z (s) has only one
singularity for Rs > 0: a removable singularity at s = 0.

If Q is twice differentiable and Q(0) = Q'(0) = 0, then Z(s) = P(s)/Q(s) is
equivalent to

Z(s) — Zr
82

(5.3) P(t) = /O o (t — 1)Q" (1)dr + ZRO().

In (5.3), Zr = lim,00 Z(s) = /p/(AoC), by (2.10). It is possible to show that
Z(s) is bounded for Rs > 0, and therefore, the inverse Laplace transform of Z(s)/s?
exists and is continuous (see [39, Lemma 3.6-1]). By approximating the integral
corresponding to the inverse Laplace transform by a rectangle rule, we can rewrite
(5.3) as

Nr—1

(5.4) P(t)~ > 2Q((Nr — k)At),

k=0

where z;, denotes the impedance weights in (5.2) computed by the inverse discrete
Fourier transform. Appendix B includes details of the derivation of (5.4), which im-
plies that the periodic boundary condition corresponds to a numerical approximation
of the general boundary condition.

5.3. Numerical issues with the periodic condition. The impedance weights
for the periodic condition, although fairly close to the weights for the general con-
dition, are oscillatory (Figure 5.1). Additionally, even in a simulation with periodic
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Fic. 5.3. Top row: Left: solutions for a simulation using raw inflow velocity data with the
periodic (blue (in the electronic version) solid curve) and general (red (in the electronic version)
dashed curve) structured tree boundary conditions (experiment 1). The solution is plotted at a node
in the Right Posterior Communicating Artery, which displays the largest difference in the network.
Right: logarithm of the absolute value of the difference between the two methods at that point. Middle
row: idem for periodic inflow velocity data (experiment 2). Bottom row: idem for periodic inflow
velocity data that experiences a rapid decrease at t = 2 with the periodic (experiment 3).

inflow velocity, the periodic structured tree condition exhibits oscillations near ¢t = 1
(middle of Figure 5.3).

Another issue is that even in a simulation with periodic inflow velocity, the so-
lution using the periodic condition converges to a periodic regime at a slower rate
than the solution obtained from the general condition. To quantify this, we rewrite
the solution “modulo T into a sequence of grid functions

Ap(z,t,) = Az, t, + kT) and  Qp(x,t,) = Q(x,t, + kT).
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We also define quantities which measure the relative change in the solution from one
period to the next,

AkA é max Ak"rl(x?tn) - Ak(x7tn) ,

=l Ne | ST A (2, )

and similarly for Qy, where €2 is the set of all spatial points in the network. Figure 5.4
displays values of Ay = max{Ag.A, A Q} for each boundary condition for the simu-
lation of the Circle of Willis with periodic inflow velocity data (Figure 5.3, middle).
Remarkably, the solution from the general condition converges to a periodic regime
at a substantially faster rate than the solution obtained from the periodic condition.

Period number

Fic. 5.4. Values of Ay for the periodic (blue (in the electronic version) solid line) and general
(red (in the electronic version) dashed line) structured tree conditions, showing that the general
condition yields a solution converging to periodicity at a much faster rate than the original, periodic
condition.

We provide an analysis of this phenomenon for the linearized equations (2.5) and
(2.6) in a network consisting of a single vessel. Rather than fixing the velocity at
the inlet, we fix the flowrate. Discretizing the system using Chebyshev collocation in
space combined with backward Euler time integration yields

_ - At -
(5.5) prtlt — pr FDQ"“,
. . Ay .
(56) Q7L+1 — Qn _ At _ODP7L+1 4 5Qn+1 ,
p
where D denotes the Chebyshev differentiation matrix, and P* = [PJ, ..., P s

the vector of pressure values at time nAt, ie., P’ ~ P(xy,nAt), where zj is the
kth of the M + 1 Chebyshev nodes. To account for the inlet boundary condition, we
replace the first equation in (5.6) by Q0" = ¢,11, where ¢ is the imposed flowrate
that is periodic (¢, = gntn, for all n). To account for the structured tree condition,

we replace equation M + 1 of (5.5) by

NT—l
+1 _ § : +1-k
k=0
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We express the map from period &k onto period k£ + 1 as

ph+1Nr ] [ PENT
Q(kH)NT QkNT
=0
PR+ Nr+1 PrNr+1 ‘{1
(5.7) R Q’(k+1)NT+1 S Q’kNT-H n q. ’
: : #Nr—1

P+2)Nr—1 P+1)Np—1 g
Q’(k+2)NT71 Q’(kJrl)NTfl

where the (M + 2)nd component of the vector ¢! equals g,41 and all other com-
ponents of ¢"*! are 0, and the matrices R and S are block Toeplitz. The vector of
flowrates does not depend on k due to the periodicity of the flowrate imposed at the
inlet. We regard the mapping from one period to the next as a fixed point iteration
and quantify the rate of convergence by analyzing the spectral radius of R~1S for the
periodic and general structured tree conditions. The inverse of R was computed semi-
analytically and the spectral radius was computed using MATLAB’s eig command.
This was done for each of the outflowing vessels of the Circle of Willis (Figure 5.5).
The results, displayed in Table 5.1, show that the spectral radius corresponding to
the general condition is many orders of magnitude smaller than the spectral radius
corresponding to the periodic condition. This is in agreement with the behavior ob-
served in Figure 5.4, where the solution obtained from the periodic structured tree
converged to a periodic regime substantially slower than the solution obtained from
the general structured tree condition.

10 11
<« —>
4 2 2

F1G. 5.5. Schematic of the Circle of Willis. The curves at the inflow vessels correspond to the
use of measured velocity data as a boundary condition, and the tree-like structures attached to the
outflow vessels indicate the use of the structured tree as a boundary condition.
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TABLE 5.1
Spectral radii of R™1S in (5.7) for the periodic and general structured tree conditions.

Vessel RPCA | LPCA | RMCA | LMCA | RACA | L ACA
Periodic spectral radius | 3.7e-03 | 3.3e-03 5.8e-03 5.2e-03 1.4e-02 | 8.0e-03
General spectral radius | 4.5e-15 | 4.5e-14 1.2e-12 6.0e-12 1.4e-16 | 2.5e-13

TABLE 5.2
Names and measured length/radii data (in cm) for the Circle of Willis (Figure 5.5). Data
are from [10]. Tpin values are optimized values from [9]. BA = Basilar Artery, PCA = Poste-
rior Cerebral Artery, PCoA = Posterior Communicating Artery, ICA = Internal Carotid Artery,
MCA = Middle Cerebral Artery, ACA = Anterior Cerebral Artery, AcoA = Anterior Communi-
cating Artery.

Name 0 L Tmin
BA 0.15 0.825 N/A

R. PCA 1 0.112 0.333 N/A
L. PCA 1 0.112 0.333 N/A
R. PCA 2 0.110 0.756 | 0.0109
L. PCA 2 0.110 0.756 | 0.0083
R. PCoA | 0.0986 1.00 N/A
L. PCoA 0.0986 1.00 N/A
R. ICA 0.210 4.81 N/A
9 L. ICA 0.210 4.81 N/A
10 R. MCA 0.134 2.11 0.0109
11 L. MCA 0.134 2.11 0.0095
12 | R. ACA' 1 0.170 1.07 N/A
13 | L. ACA'1 0.100 1.07 N/A
14 ACoA 0.100 0.20 N/A
15 | R. ACA 2 0.115 2.30 0.0198
16 | L. ACA 2 0.115 2.30 0.0090

OO | O U [ W N —

The slow convergence rate accompanying the periodic condition can have serious
computational consequences. For example, the authors of [13] report that the periodic
structured tree condition requires eight periods to converge to a periodic regime in
their three-dimensional simulation of the cranial arterial tree, with one period requir-
ing three hours of computation time. The results from this section indicate that the
use of the general structured tree condition over the original, periodic version may
yield substantial computational savings, even when one is performing simulations of
blood flow that are periodic in time.

5.4. Numerical simulation details. To investigate various properties of our
general structured tree boundary condition, we have implemented it in various nu-
merical simulations of blood flow in the Circle of Willis (Figure 5.5 and Table 5.2).
The actual results are interspersed in section 5. Here we give additional information
pertaining to these numerical experiments.

Within each vessel of the Circle of Willis, we use (2.2) and (2.3) to model the
hemodynamics. Proceeding as [12, 29], a characteristic study shows that, at standard
operating regimes, changes in cross-sectional area and flowrate propagate at speed
U+ S, where U = Q/A is the flow velocity and S > |U|. In other words, within
each vessel, one scalar boundary condition is required at each end. There are three
types of boundaries in this network: inflow/outflow boundaries and junctions. For
inflow boundaries, we enforce % = U, where U is velocity data measured using digital
transcranial Doppler technology at the Beth Israel Deaconess Medical Center. For
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outflow boundaries, we use the general structured tree boundary condition described
in section 2, as well as the periodic structured tree condition described in [9] for
comparison. At junctions, we impose conservation of mass and continuity of pressure;
see [2, 10] for justification. Specifically, if at a particular junction there are m incoming
vessels and n outgoing vessels, we enforce

STOWE L) =D Q% (t,0),
k=1

k=1
1 m 1 n
PRt L1) = = PRVt Lin) = PSp(£,0) = -+ = PSU5(2,0),

where L denotes the length of vessel k.

To solve this boundary value problem, we use a Chebyshev collocation method
with backward Euler time discretization. All numerical simulations were implemented
with a time step size of 0.025 seconds and five spatial points per vessel. Grid refine-
ment study indicates that these values are sufficient to ensure a relative accuracy of
one percent. Parameter values used in these simulations are based on physiological
data and can be found in Table 5.3 [23, 24].

TABLE 5.3
Parameters used for the numerical simulations in section 5.

Geometric parameters | a = 0.91, 8 = 0.58, A = 50
Fluid parameters v =2, p=106g cm™3, u = 0.0488g cm~'s~!
Elastic relations C = 3713 /2Eh, Eh/r = k1eF2" 4 k3

k1 =2.00 x 107 gs—2cm~ 1, ko = —22.53 cm !
k3 = 8.65 x 10° gs—2cm 1!

Elastic parameters

6. Conclusions. Unlike most outflow boundary conditions in computational
hemodynamics, structured tree boundary conditions [9, 22, 23, 24, 32] have the ad-
vantage of being physiologically based. However, their derivation is based on Fourier
series arguments which only apply to strictly periodic flows—a significant restriction
in practice.

The new general structured tree boundary condition proposed here is valid for
all flows. The periodic conditions from [9, 22, 23, 24, 32] can be viewed as numerical
approximations to the new one. Our analysis shows that the new and old conditions
yield results which are remarkably similar. One of the practical implications of the
present work is that the “traditional” structured tree boundary conditions may be
used for nonperiodic flows even though they were not derived within that framework.

Cost and complexity being similar, the authors believe the new condition should
be preferred over the old one both for periodic flows, as the numerical solution reaches
periodicity much faster, and for general flows, as the new method has better stability
properties.

Appendix A. Proof of Theorem 4.1. This appendix contains the auxiliary
results (and corresponding proofs) necessary to the establishment of Theorem 4.1.
The proof relies on eliminating the seven possible cases for the singularities of the
impedance that are identified in section 4. Since the real part of expression (2.10)
is unchanged under complex conjugation of s, we need only consider the quadrants
Rs > 0 and Js > 0. Additionally, we use the fact that 8, C, p,rg, u, v, and L are
positive real constants due to their physiological meaning.
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It is elementary to check that case 1 corresponds to a removable singularity.
Since § > 0, case 2 is impossible. By Lemma A.1 below, case 3 cannot be realized.
Lemma A.1 also implies that R(L/ds) > 0; therefore case 4 is impossible since the
singularities of tanh are purely imaginary.

Theorem A.7, which deals with the properties of (2.10) and relies on auxiliary
Lemmas A.2-A.6, allows us to eliminate cases 5, 6, and 7. Since Ziorm has nonnegative
real part by assumption, it follows from Theorem A.7 that Z(s,0) has positive real
part for any terminal vessel. Furthermore, for Zg(s,0) and Zgs(s,0) with positive
real part, the junction condition (2.11) implies that Zpa(s, L) has positive real part as
well. Therefore, in any vessel in the tree, Z(s,0) has positive real part and Z(s, L) has
nonnegative real part, with %[Z (s, L)] = 0 being possible only for terminal vessels.
This fact, combined with Lemma A.5, implies that a singularity of case 5 is not
possible. Also, since R(Z(s,0)) > 0 for all vessels in the tree, singularities of cases 6
and 7 do not exist. This completes the proof of Theorem 4.1.

LEMMA A.1. Let s € C be nonzero in the first quadrant, i.e., s > 0, Is > 0,
and s # 0. Then Ry/s(s+ ) > 0 and I\/s(s+0) > 0, where ¢ is a positive real
number. Moreover, I\/s(s +J) =0 only when s € R.

Proof. The proof is elementary. d

LEMMA A.2. Let s € C such that s > 0 and Ss > 0. Then

0 < arg(sds) < w/4.

Proof. By definition of ds in section (2),

arg(sds) = arg 4/ ﬁ = % (arg(s) — arg(s +9)) .

The desired inequalities follow from the fact that § is real and positive. d
LEMMA A.3. Let z =x + iy € C such that Rz > 0. Then

inh(2 in(2
tanh(z) = sinh(2z) i sin(2y) .
cosh(2z) + cos(2y)  cosh(2x) 4 cos(2y)
Proof. The proof is elementary. O

LEMMA A.4. Let z € C such that Rz > 0 and Sz > 0. Then
arg(tanh(z)) < arg(z),
with equality holding only when [z] = 0.
Proof. The proof is elementary. d
LEMMA A.5. Let s € C such that s > 0 and Ss > 0. Then
R[sds tanh(L/ds)] > 0,
with equality holding only when s = 0.
Proof. If s € R and s > 0, then the result is obvious. We now show that if Ss > 0,
then | arg(sds tanh(L/ds))| < 7/2. By Lemmas A.1 and A.3, R[tanh(L/ds)] > 0, so
arg [tanh(L/ds)] > —m/2. Combining this with Lemma A.2 yields

arg(sds tanh(L/ds)) = arg(sds) + arg(tanh(L/ds)) > —m/2.
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For s > 0, S[y/s(s+ 6)] > 0 by Lemma A.1. Finally, according to Lemma A .4,
arg(sds tanh(L/ds)) < arg(s) + arg(ds) + arg(1/ds) = arg(s) < /2. a
LEMMA A.6. For any s € C where R[s] > 0,5[s] > 0, the inequality

32 (ashs) < 4R(as)R(bs)

cot [arg (tanh (225 ) )} > tan(arg(sds)),

where as and bs are defined in Theorem A.7.

Proof. The proof is omitted. Although lengthy, the proof is merely a straightfor-
ward application of numerous identities. a

THEOREM A.7. Consider the following family of mappings parameterized by s:

is equivalent to

Z 4+ ag

1 L L
Fy(2) = L as = d.C tanh <d_s> , bs = sd,C tanh (d_s> .

For any s # 0 with nonnegative real part, Fs maps the region {z € C; Rz > 0} into
the region {z € C; Rz > 0}.

Proof. Consider the mapping Fs for a particular s # 0, where R[s] > 0 and
S[s] > 0. We wish to show that R[F,(z)] > 0 for any z € C, where R[z] > 0.
Lemma A.5 implies bs; has positive real part and z has nonnegative real part by
assumption, so the denominator of Fy(z), bsz+ 1, is not zero. Therefore, R[Fs(z)] > 0
if and only if

0<R [(z ta) bz + 1),
= R[bs] |2])° + R[asbsz] + R [Z] + R]as].
Next, we write z = x + iy and view the above function of a complex variable z as a

function gs of two real variables x and y. The above inequality is equivalent to the
inequality

0 < R[bs][2* + y*] + Rlasbsz + S [ashs| y + = + Rlas] £ gs(z,y)

holding for all z € [0,00] and y € R. We find the minimum of gs by analyzing its
partial derivatives,

0 B sd 5
%gs(x,y) =2R[bs]x + R L‘d] [tanh(L/d,)|* + 1.

By Lemma A.5, R[bs] > 0. Lemma (A.2) implies that R[sd/sd] > 0, so g, is increasing
with respect to x. Therefore, the minimum of g, in the right half plane occurs on the
imaginary axis (¢ = 0) and this minimum is found as

,oin gs(z,y) = min 9s(0.y) = R(as) —
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Therefore, Theorem A.7 is equivalent to the following inequality holding for all s # 0
with nonnegative real part:

32(asby) < 4R(as)R(bs).

If s is real, then as and b are real and positive so the above inequality holds triv-
ially. If S[s] > 0, Lemma A.6 implies that the above inequality is equivalent to
cot(arg(tanh(L/2dy))) > tan(arg(sds)). This inequality holds due to Lemma A .4 and
the fact that args > 7/2. Indeed,

cot(arg(tanh(L/2d))) > cot(arg(l/ds)) = tan(w/2 — arg(1/ds)) > tan(arg(sds)).

This completes the proof of Theorem A.7. O

Appendix B. Derivation of (5.4). For large enough values of t, £L71[(Z(s) —
Zr)/s?)(t) becomes linear. This was observed through extensive numerical exper-
iments, and can be shown analytically for a tree consisting of a single vessel. In
implementing the periodic structured tree condition, one must prescribe a value of
the expected period T (typically T ~ 1 second). In our numerical experiments, the
convergence of L71[(Z(s)— Zgr)/s?](t) to a linear regime occurs rather quickly, within
0.1 to 0.3 seconds. Therefore, for ¢t > T', we approximate this inverse Laplace trans-
form by a line mt + b. Replacing the inverse Laplace transform in (5.3) for ¢ > T with
mt + b yields
Z(s) — Zg

52

P(t) =TI+ I+ ZrQ(t), I = /th £t (t—7)Q"(r)dr

with
t—T
I = / (m(t —7) +5) Q"(r)dr = (mT +b) Q'(t = T) + m Q(t — T).

Since Z(s)/s2 ~ O(1/s?), the integral corresponding to the inverse Laplace transform
operator converges uniformly for 7 € [0,¢]. Tt is, therefore, valid to interchange the
inverse Laplace operator with the outer integral. Integration by parts leads to

A=t [ Q’(T)e”dT] o)

Using the approximate linearity of £~ [(Z(s) — Zg)/s%|(t) for large ¢ and integrating
by parts again, we have

Z(s) — Zg
S2

I=-Q@t-T)c™ (T)+ L1

I~-Qt—T)(mT+b)—mQ(t—T)+L* |:(Z(S) —7Zg) /t_T Q(T)B_STCZT:| (t).

Approximating the integral corresponding to the inverse Laplace transform (see (3.2))
by a rectangle rule with mesh width 27 /T yields

I~-Qt—T)(mT+b)—mQ(t—T)

Np—1
2 N N . 1 [t .
+ Z (Z(z'wk—l—a)—ZR)e(w’“’L")t—/ Q(T)e_(“””L")TdT.
e Nz =1 T t=T
= Nr-1
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Since Z(s) has no singularities for Jts > 0 (see section 4), ¢ may be any positive real
number. Furthermore, Z(s) being continuous for all s with $s > 0, we take the limit
as 0 — 0 to obtain

I~—-Q'(t—T)(mT+b)—mQ(t—T)

Np—1
2

> Z iw 1 i — W T
+ > (Zk—Zp)e ktf/tiTQ(T)e *Tdr,

_ Np-—1
k=——"1—

where we have used the fact that Z (lwy) = Ze. Approximating the Fourier integral
of @ with a discrete Fourier transform of Q(t — (Np — 1)At), ..., Q(t) yields

I~-Q(t—T)mT+b—mQ(t—T)+ Z ZAkQECNT)ei“”“t — ZrQ(t).

k=

This yields the following approximation of the general boundary condition:

Np+1
2
PO mI+L+ZrQt) = Y. Z,Q e,
k—=— N7+

2

This leads to (5.4).
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