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SUMMARY

We discuss the implementation and calibration of a new generalized structured tree boundary condition for
hemodynamics. The main idea is to approximate the impedance corresponding to the vessels downstream
from a specific outlet. Unlike previous impedance conditions, the one considered here is applicable to general
transient flows as opposed to periodic ones only. The physiological character of the approach significantly
simplifies calibration. We also describe a novel way to incorporate autoregulation mechanisms in structured
arterial trees at minimal computational cost. The strength of the approach is illustrated and validated on
several examples through comparison with clinical data. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A common goal of computational hemodynamics studies is the numerical prediction of blood flow
downstream from stem arteries in which measurements are available. For instance, one might be
interested in blood perfusion in the middle cerebral artery (MCA) territory given measured values of
the blood velocity in the MCA itself. Because of computational complexity and uncertainties about
the geometry of the vasculature, such calculations are usually only performed in a small number
of contiguous vessels. At the downstream edge of the computational domain, outflow boundary
conditions are imposed. Ideally, these conditions

1. model faithfully the influence of the vasculature that is not included in the computational
domain,

2. lead to a mathematically well defined and numerically tractable set of equations,
3. contain parameters that can either be directly measured or easily calibrated, and
4. are straightforward to implement and computationally inexpensive.

We propose an approach that, in addition, can be applied to general transient flows and requires
calibration of only a few parameters because of its inherent physiological nature.

It is possible to derive outflow boundary conditions for a fluid flowing in a vessel by relating the
pressure drop P along the vessel (or network of vessels) to the flux Q through that vessel (or set
of vessels). In the simplest case of an established flow, that is, no time dependence, P and Q are
linearly related through P D RQ where R is a resistance value; this is Darcy’s law. This relation
has been used in hemodynamics [1–3] by assuming the frequency of the flow (roughly 1 Hz) to be
low enough for the instantaneous value of Q at time t; Q.t/, to depend only on the instantaneous
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IMPEDANCE BOUNDARY CONDITIONS FOR GENERAL TRANSIENT HEMODYNAMICS 1295

value of P at that time, P.t/. This purely resistive condition has several drawbacks; in particular, it
may lead to unrealistic values and also forces the flow rate and pressure to be in phase [4–6].

For general transient flows, there is no reason for a direct relation between P.t/ and Q.t/ to
exist. In [7–9], Olufsen worked instead with each spectral component of P andQ, obtained through
Fourier analysis, and defined a frequency dependent complex version of R, that is, an impedance.
This approach is based on the assumption that, downstream of an outflow vessel, the vessels
form a fractal (finite) tree. It is also limited to periodic flows. In [10], we retained the geometric
assumptions of [7–9] but defined the impedance of a vascular tree through its Laplace—instead
of Fourier—transform, see (2) in the succeeding text. This allows for the simulation of general
transient flows.

In this study, we begin by briefly summarizing our generalized structured tree boundary con-
dition, which was originally developed in [10] (Sections 2.1 and 2.2). In Section 2.3, we discuss
new adjustments to the structured tree; although minor, they lead to significant improvements. As
noted in [11], users are often required to use physically unrealistic values for the tree’s governing
parameters in order to obtain accurate simulation results. The physiologically based modifications
of Section 2.3 correct this: we obtain results agreeing well with in vivo data using realistic tree
parameters in Section 3.1.

We incorporate autoregulation into the tree formulation in Section 2.5 by including vasodilation
and vasoconstriction of the smaller arteries. This approach requires minimal computational cost.
Our approach is compatible with a broad class of autoregulation models. Our results in Section 3.3
agree well with clinical data for three considered experiments.

2. METHOD

The derivation of the generalized structured tree condition [10] relies on three steps. First, the
impedance at the beginning of a vessel (inflow) is expressed as a function of the impedance at
the end of that vessel (outflow) (Section 2.1). Second, through continuity and conservation princi-
ples, impedance values are recursively propagated through the entire tree (Section 2.2). Third, the
obtained impedance is turned into an implementable outflow boundary condition (Section 2.4).

2.1. Impedance of a single vessel

The approach is based on the linearization and cross-sectional averaging of the incompressible
Navier-Stokes equations in elastic axisymmetric cylindrical vessels [11–15]. The system is closed
with a constitutive relation linking the pressure P to the cross-sectional area A

P D P.A/, A D A.P /:

In this work, we use the following relation from Olufsen [8]:

P � P0 D
4Eh

3r0

 
1 �

r
A0

A

!
; (1)

where A0 D �r20 is the unstressed cross-sectional area of the vessel, r0 being the unstressed vessel
radius, and E and h are the Young modulus and thickness of the vessel wall, respectively.

The resulting equations can be solved analytically by expressing the unknowns in terms of their
Fourier coefficients [7–9, 11, 16]. To treat general transient flows, we take instead the Laplace trans-
form of the system with respect to time and define the impedance Z through its Laplace transform
OZ D L.Z/ by

OZ.x; s/ D
OP .x; s/

OQ.x; s/
; (2)
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1296 W. COUSINS AND P. A. GREMAUD

where x measures the longitudinal distance along the vessel and s is a generic complex number; OP
and OQ are the Laplace transforms of the pressure P and the flow rate Q. For a vessel of length L,
the impedance satisfies [10]

OZ.0; s/ D
OZ.L; s/C 1

sdsC
tanhL=ds

sdsC OZ.L; s/ tanhL=ds C 1
; (3)

where C D dA=dP jPDP0 is the vessel compliance. In addition, d2s D A0=ŒC�s.s C ı/� and
ı D 2�.� C 2/=

�
�r20

�
where� and � are the blood viscosity and density. In the previous derivation,

the parameter � defines the radial profile of the longitudinal velocity; � D 2 corresponds to the
classical Poiseuille flow.

A strength of the structured tree approach is that a user is not necessarily required to use our
particular model. If one prefers an alternative hemodynamic model or constitutive model for the
arterial wall, it would be straightforward to derive an analogous version of the impedance relation
(3) using these alternative models through simple linearization.

2.2. Impedance of a vascular tree

We consider vascular trees with the following structure [7–11] and constant scaling parameters
throughout:

1. All vessels have the same aspect ratio � D L=r .
2. Each vessel bifurcates into two daughter vessels unless its radius is less than a minimum radius
rmin > 0, in which case it terminates.

3. The relationship between the parent vessel radius rp and the daughter vessels’ radii rd1 and
rd2 is characterized by two constant scaling factors ˛ and ˇ such that

rd1 D ˛ rp and rd2 D ˇ rp:

A vascular tree is thus determined by the four parameters ˛; ˇ; �, and rmin along with the radius
of the root vessel rroot .

At junctions, we assume continuity of the pressure and conservation of mass, which yields by (2)

1

OZp.L; s/
D

1

OZd1.0; s/
C

1

OZd2.0; s/
; (4)

for any complex number s. The impedance at the end of terminal vessels is set to a common value
OZterm, and the impedance of a root vessel is found by applying recursively relations (3) and (4), see

Sections 2.3 and 2.4.

2.3. Parameter choices

We consider three additional modifications to the structured tree boundary condition.
First, the choice of the minimum radius rmin (radius of terminal vessels) is delicate because there

are in fact no terminal vessels at the bottom of the tree but rather a transition to the venous side
of the vasculature. Further, the tree impedances depend strongly and non-smoothly on rmin [11,
17]. In the context of structured tree boundary conditions, values ranging from 3 �m to 600 �m
have been used [8, 9, 11, 16–19]. At the capillary level, the vascular network no longer resembles a
fractal tree but is more accurately described by a complex, mesh like structure [20]. Thus, we choose
rmin D 30 �m because our binary tree description is likely inaccurate for capillary vessels of radii
smaller than this value.

Second, while the choice OZterm D 0 is standard [8–11, 17, 18], elementary arguments show
this value to be drastically unrealistic [17]. One possible way to rectify this issue would be to
determine physiologically appropriate values of OZterm to impose at the terminal vessels. However,
doing so would require somewhat detailed knowledge of the relationship between pressure and
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flow rate at these terminal vessels. A simpler solution is to impose a constant terminal pres-
sure, Pterm. Including this terminal pressure modifies (2) so that the corresponding time domain
expression becomes

P.t/ D

Z t

0

Z.�/Q.t � �/ d� C Pterm; (5)

where LŒZ� D OZ, where OZ is the impedance at the root of the tree computed with OZterm D 0

(see [17] for discussion and further justification). Pressure values of roughly 45 mmHg have been
reported at the level at which we terminate the tree .rmin D 30 �m/ [7, 21]. We use Pterm D
45 mmHg in all simulations here.

Third, we consider the radius dependent relative effective viscosity proposed in [22] (relations (9)
and (10)) for a normal hematocrit value of 0.45

�rel D

"
1C

�
�? � 1

� � D

D � 1:1

�2#�
D

D � 1:1

�2
;

�? D 6 e�0:085D C 3:2 � 2:44 e�0:06D
0:645

;

where D is the diameter of the vessel measured in microns .�m/. We use � D 0:0488�rel=3:2 in
(3) to ensure that � � 0:0488 g � cm�1 � s�1 when D is large, where the viscosity shows little
dependence on vessel diameter [22, 23]. Finally, we take ˛ D 0:91; ˇ D 0:58. These values were
proposed in [8] after an investigation of measured and theoretically optimal values. These and other
parameters used in the proposed boundary condition are summarized in Table I.

2.4. Implementation

The direct implementation of (5) would require the calculation of the inverse Laplace transform of
OZ, an ill-conditioned numerical operation [24]. We take instead a convolution quadrature approach,

Table I. Parameters and their values involved in the proposed boundary condition.

Parameter Value/expression

Fluid �: blood viscosity See Section 2.3
�: blood density 1.06 g cm�3

� : velocity profile 2
Pterm: terminal pressure 45 mmHg
OZterm: terminal impedance 0

Elasticity [8] C : compliance 3
2�r

2
0
r0
Eh

Eh
r k1e

k2r C k3
k1 2:00 � 107 gs�2cm�1

k2 �22:53 cm�1

k3 8.65 �105 gs�2cm�1

Geometry ˛: radii ratio 0.91
ˇ: radii ratio 0.58
�: length/radius ratio Variable
rroot : root/outflow vessel radius Variable
rmin: minimum radius 30 �m

Autoregulation GAR: autoregulation gain 4

Numerics tf : final simulation time Variable
	t : time step Variable
N : number of time steps tf =	t


: accuracy parameter 10�10
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1298 W. COUSINS AND P. A. GREMAUD

which only requires the value of OZ rather than Z [25, 26]. This results in the following boundary
condition to be enforced at the end of the outflow vessel:

Pn D

nX
kD0

´kQn�k C Pterm: (6)

In (6), Pn is the value of the pressure at the n-th time step, and Qk is the value of the flow rate at
the k-th time step, assuming a constant time step �t .

We now describe how to compute the impedance weights ´k; k D 0; : : : ; N . Although N should
formally be taken as the total number of time steps, this choice could be computationally costly
for long time simulations. Choosing N D ceil.1=�t/ (smallest following integer to 1=�t ) gives
nearly identical results without any accuracy loss because the values of ´k converge quickly to 0 as k
becomes large [10, 17]. An example of this convergence behavior is displayed in Figure 1, left. This
convergence behavior was observed universally in all trees considered in this work. Furthermore,
´k can be viewed as a measure of the relationship between the pressure at time t and the flow rate at
time t � k�t . One would not expect strong relationships between the pressure at a particular time
and the flow rate in the distant past, which suggests that ´k should converge to 0 as k !1.

The algorithm essentially consists of the three functions described in the succeeding text. The
function SINGLEVESSELIMP merely implements (3). The IMPEDANCE function corresponds to the
iterative process described at the end of Section 2.2, where (3) and (4) are recursively applied to
compute the impedance OZ.s/ at the root of the structured tree. The IMPEDANCEWEIGHTS function
computes the impedance weights ´k entering (6). The function IMPEDANCEWEIGHTS performs
the convolution quadrature approach developed by Lubich [25, 26]. For additional insight into the
meaning of the steps performed in IMPEDANCEWEIGHTS, please refer to [25] or [10]. Additional
justification and explanation for all algorithms are available in [10].

function IMPEDANCEWEIGHTS(rroot ; �t; 
)
Inputs: rroot - radius of the outlet vessel

�t - time step size

 - numerical accuracy of IMPEDANCE function (we use 10�10)

Output: impedance weights ´n, n D 0; : : : ; N

N D ceil.1=�t/
� D 
1=2N

for m D 0 W 2N � 1 do
 D �ei�m=N

� D 1
2
2 � 2 C 3

2
table = array of NaN
Z.m/ = IMPEDANCE(rroot ; �=�t ,1,1,table)

end for
for n D 0 W N do

´n D
��n

2N

P2N�1
mD0 Z.m/e�i�mn=N

end for
end function

2.5. Incorporation of autoregulatory mechanisms

Cerebral autoregulation refers to the adaptive dilation or contraction of vessels (primarily the smaller
arteries) to maintain a relatively constant flow rate despite changes in pressure [27–29]. Vasodila-
tion/constriction can be induced by a variety of mechanisms including myogenic [30], neurogenic
[31, 32], shear stress-based [33], and metabolic mechanisms [34, 35]. Situations involving strong
autoregulatory effects are prime examples of non-periodic flow conditions. While previous ver-
sions of the structured tree boundary condition are restricted to periodic flows, our generalized
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function IMPEDANCE(s; rroot ; N˛; Nˇ ,table) F recursive function
Output: Laplace transform of tree impedance

r0 D rroot˛
N˛�1ˇNˇ�1

if r0 < rmin then
ZL D Zterm

else
if table(N˛ C 1;Nˇ ) is NaN then

ŒZD1; table� DIMPEDANCE(s; rroot ; N˛ C 1;Nˇ ; table)
else

ZD1 D table(N˛ C 1;Nˇ )
end if

if table(N˛; Nˇ C 1) is NaN then
ŒZD2; table� DIMPEDANCE(s; rroot ; N˛; Nˇ C 1; table)

else
ZD2 D table(N˛; Nˇ C 1)

end if
ZL D ZD1 �ZD2=.ZD1CZD2/

end if

Z0 = SINGLEVESSELIMP.ZL; s/
table.N˛; Nˇ / D Z0
return Z0,table

end function

function SINGLEVESSELIMP(ZL; s)
Output: Z0, Laplace transform of the impedance at x D 0 given ZL, its value at x D L

if s D 0 then
Z0 D ZLC 2.�C2/��

�r3
0

else
ı D 2�.� C 2/=

�
�r20

�
ds D

q
�r20=.C�s.s C ı// F principal value

Z0 D
�
ZLC 1

sdsC
tanh L

ds

�
=
�
sdsC ZL tanh L

ds
C 1

�
end if

end function

condition can be used for such transient flows. We describe a general procedure for incorporating
microvascular changes due to autoregulation into the structured tree.

In Sections 2.1 and 2.2, we recalled how to compute the impedance of a structured tree by analyti-
cally solving the linearized flow equations via Laplace transform. That construction assumes, within
each vessel, all parameters to be constant. However, in the case of autoregulation, the unstressed
vessel radius r0 varies with time. Even though the tree hemodynamic equations are taken as linear
in the state variables P and Q, the dependence on r0 is nonlinear. We construct below an efficient
and accurate parametrization of the effects of microvascular dilation/constriction on the impedance
weights.

We begin by analyzing the effects of variations of the unstressed radii of the smaller arteries on
the impedance of the structured tree. Assume that the unstressed radii of the smaller arteries (vessels
with r0 < rAR , 100�m) are multiplied by a constant scaling factor CAR. It is straightforward
to compute, for various CAR, the impedance weights ´k.CAR/ of the modified trees. We enforce

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2014; 30:1294–1313
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1300 W. COUSINS AND P. A. GREMAUD

Figure 1. Left: impedance weights corresponding to the unmodified tree (black, dotted line), weights corre-
sponding to tree with radii of smaller vessels multiplied by 1.35 (blue, solid line), and the unmodified weights
multiplied by an exponential function according to (7) with MAR D �7:19 (red, dashed line). Right: Error
of similar fits for root radii of 0.1 (solid line), 0.2 (dashed line), and 0.33 (dotted line) for varying degrees of

microvascular dilation/constriction.

the termination criterion r0 < rmin based on the unmodified radius, that is, the network structure
remains unchanged for all values of CAR. On the basis of extensive numerical experiments, we
propose the following parametrization of the dependence of the ´k’s on CAR

´k .CAR/ � ´k.1/ e
MARk�t ; k D 0; : : : ; N; (7)

where ´k.1/ is the k-th weight of the unmodified tree, and �t is the time step. For each value of
CAR, we determine a single value of MAR that minimizes the relative error in the fit (7), that is,

E .rroot ; CAR/ D

��z.CAR/ � z.1/ � � eMARŒ0;:::;N ��t
��
1

kz.CAR/k1
; (8)

where z D Œ´0; : : : ; ´N �; �� is the element-wise vector multiplication, and k � k1 is the `1 norm.
Figure 1, left, displays this fitting procedure for a tree with root radius 0.2 cm and CAR D 1:35.
Approximation (7) is accurate over a wide range of root radii and dilation factors (CAR), with the
relative `1 error (8) never exceeding 6% for the cases considered (Figure 1, right).

We have verified the accuracy of this procedure for trees with root radii of 0.1, 0.2, and 0.33 cm (in
all simulations performed in this work, root radii of outlet vessels range between 0.1 and 0.33 cm).
For each value of CAR, we compute the “resistance” at the root of the structured tree, OZroot .s D
0ICAR/, which by definition corresponds to a ratio of time averaged pressure to time averaged flow.
For each root radius value, we perform this fitting procedure for a range of CAR corresponding to
resistances between 74% and 130% of the unmodified tree resistance OZroot .s D 0ICAR D 1/. This
roughly corresponds to typical lower and upper limits of the autoregulatory response [34, 36].

The aforementioned analysis provides a surrogate for the effects of different, time-invariant
microvascular structures. It does not address the actual transient dynamics of the tree impedance in
response to time-varying r0. However, the time scales of autoregulatory responses (generally 5–20 s,
depending on the cardiovascular health of the individual [27, 37]) are substantially larger than the
‘memory’ of the structured tree. By memory, we mean the width of the support of the time-domain
impedance (Figure 1, left), which is typically around 0.25 s and never more than 0.5 s in the cases
considered in this paper. Thanks to these distinct time scales, it is thus reasonable to account for
autoregulation-induced microvascular changes by

Q́k .MAR.t// D ´ke
MAR.t/k�t ; k D 0; : : : ; N: (9)

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2014; 30:1294–1313
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The ´k’s in (9) are the weights for the unmodified tree and are computed prior to the simu-
lation by the procedure described in Section 2.4. At each outlet, we simply impose condition
(6) with the original impedance weights ´k replaced by the autoregulation-modified weights Q́k
from (9).

The dynamics of MAR are governed by one’s autoregulatory model of choice. We use here a
simple ad hoc model to describe the variations of the tree resistance away from its baseline value
of Req D .Peq � Pterm/=Qeq . If Q is the flow rate at the end of the outlet vessel, we consider the
auxiliary equation

dxAR

dt
D GAR

�
Q.t/ �Qeq

Qeq

�
; (10)

where GAR is the autoregulation gain. Equation (10) is similar to one component of the model used
by Ursino et al. [38, 39]. Ursino et al. also incorporate an additional equation for CO2 reactivity.
While it would be straightforward to include this equation in our framework, (10) is adequate for
the experiments of Section 3.3.

We obtain the auto-regulated value of the resistance RAR from xAR by imposing auto-regulatory
limits. More precisely, baseline flow rate is generally only maintained for pressures between roughly
74% and 130% of baseline [34, 36]. We take this into account by passing xAR into a sigmoidal
function from [34, 35]

RAR D
RAR;L CRAR;U e

xAR� OC

1C exAR� OC
(11)

where OC D � log
	�
Req �RAR;L

�
=
�
RAR;U �Req

�

with RAR;L D .0:74Peq �Pterm/=Qeq and

RAR;U D .1:3Peq � Pterm/=Qeq . The equilibrium pressures and flowrates for a particular outlet
vessel, Peq andQeq , are obtained by running a baseline simulation, as we do in Section 3.1. Finally,
the impedance weights corresponding to a particular RAR are found by solving

NX
kD0

Q́k.MAR/ D RAR

NX
kD0

´k; (12)

for MAR. In (12), Q́k are the autoregulated impedance weights given by (9), and ´k are the
unmodified weights computed prior to running the simulation.

When using implicit time-stepping, as in the present work, the aforementioned autoregulatory
model can be implemented by merely adding two equations, (10) and (12), per outlet vessel to the
nonlinear system that is solved at each time step. For our simulation of the systemic arterial tree,
the system contains thousands of equations, most of which from the discretized macroscopic flow
equations [(13) and (14)]; autoregulation adds thus minimal computation cost. With an explicit time
stepping routine, one would need to solve (12) for MAR at each time step after updating RAR by
(10) and (11). Because of the positivity of the weights ´k , there is, for each RAR, a unique value
ofMAR that solves (12). Furthermore, thanks to the relatively slow timescales of the autoregulation
mechanisms, MAR only changes by a small amount from one timestep to the next.

In summary, we incorporate autoregulation into the structured tree via a simple modification
of the impedance weights through expression (9). This does not require the modification of the
pre-simulation algorithm for computing the impedance weights discussed in Section 2.4. One may
merely modify these weights on the fly through expression (9) during a simulation in accordance
with an autoregulatory model of one’s choosing, such as (10) and (11). The approach can, in prin-
ciple, accommodate a broad class of autoregulation models such as those of Ursino [38, 39], the
metabolic models of David et al. [34, 35] and the model of Spronck et al. [40].

3. RESULTS

To test the aforementioned condition, we apply it to the following standard one-dimensional model
[10–15, 17, 41, 42] valid in the larger vessels of some commonly considered vascular networks:

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2014; 30:1294–1313
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1302 W. COUSINS AND P. A. GREMAUD

Table II. Data for the network displayed in Figure 2.

Number Name rt (cm) rb (cm) L (cm)

1 Ascending aorta I 1.25 1.23 2.0
2,3 R, L coronary 0.30 0.30 10.0
4 Ascending aorta II 1.23 1.14 5.0
5 Anonyma 0.70 0.70 3.5
6, 19 R, L subclavian 0.44 0.43 3.4
7, 8 R, L brachial 0.43 0.28 40.6
9, 10 R, L ulnar 0.22 0.22 6.7
11, 12 R, L radial 0.17 0.14 23.5
13, 14 R, L vertebral 0.14 0.14 14.8
15 R common carotid 0.29 0.28 17.0
16 L common carotid 0.29 0.28 19.0
17 Aortic arch 1.14 1.11 1.8
18 Aortic arch 1.11 1.09 1.0
20 Thoracic aorta 1.09 0.85 18.8
21 Celiac axis 0.33 0.30 3.0
22 Abdominal aorta 0.85 0.83 2.0
23 Superior mesenteric 0.33 0.33 5.0
24 Abdominal aorta 0.83 0.80 2.0
25, 26 R. L renal 0.28 0.25 3.0
27 Abdominal aorta 0.80 0.79 1.0
28 Abdominal aorta 0.79 0.73 6.0
29 Inferior mesenteric 0.20 0.18 4.0
30 Abdominal aorta 0.73 0.70 3.0
31, 32 R, L external iliac 0.45 0.43 6.5
33, 34 R, L femoral 0.43 0.40 13.0
35, 36 R, L internal iliac 0.20 0.20 4.5
37, 38 R, L femoral 0.40 0.30 44.0
39, 40 R, L deep femoral 0.20 0.20 11.0
41, 42 R, L external carotid 0.15 0.15 17.7
43, 44 R, L internal carotid 0.20 0.20 17.7
45, 46 R, L middle cerebral artery 0.14 0.14 11.9
47, 48 R, L anterior cerebral artery A1 0.12 0.12 1.2
49, 50 R, L anterior cerebral artery A2 0.12 0.12 10.3
51 Anterior communicating artery 0.07 0.07 0.3
52, 53 R, L posterior communicating artery 0.07 0.07 1.5
54, 55 R, L posterior cerebral artery P2 0.10 0.10 8.6
56, 57 R, L posterior cerebral artery P1 0.11 0.11 0.5
58 Basilar 0.16 0.16 2.9

rt denotes the vessel radius at the proximal end of the vessel, rb is the radius at the
distal end of the vessel, and L denotes the vessel length. Wherever possible, values
were taken from Olufsen et al. [9]. Values for the ulnar/radial arteries were taken from
Reymond et al. [43], and values for the Circle of Willis were taken from Sherwin
et al. [44].

@tAC @xQ D 0; (13)

@tQC
� C 2

� C 1
@x

�
Q2

A

�
C
A

�
@xP D �

2��.� C 2/

�

Q

A
: (14)

We consider two cases: a simulation of the larger systemic arteries with periodized data from [9]
(Section 3.1) and a non periodic Circle of Willis simulation in Section 3.2. We showed elsewhere
[10, 17] that the general impedance condition discussed here yields results close to those corre-
sponding to the periodic structured tree condition from [7–9] but has better stability. Comparisons
with other types of boundary conditions can be found in [7, 8, 11, 17].
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Figure 2. Network structure for the systemic arterial tree simulation; see Table II for detailed
geometrical data.

3.1. Systemic arterial tree simulation

Consider the vascular network described in Figure 2. We compare our simulation results to flow rate
data measured using magnetic resonance techniques in a 32-year old male weighing 65 kg and being
178 cm tall (see [9] for additional details regarding the data). The root vessel radii are taken from
measurements while the length to radius ratio � as used is a lone calibration parameter. To deter-
mine �, we minimize theL2 norms of the differences between the measured and simulated flowrates
for the nine vessels for which measurements are available (Figure 3). We perform this optimiza-
tion using MATLAB’s trust region reflective algorithm and enforce symmetry in this calibration
procedure. In other words, we require the length to radius ratio for corresponding right and left ver-
sions of the same vessel to be the same thereby reducing the number of calibration parameters by
nearly half.

Computational results, displayed in Figure 3, show good agreement between the data and sim-
ulation ‡. We do not have any measured pressure data, but at the aortic level, the pressure ranges
between 70 and 125 mmHg (Figure 8), which is close to the typical physiological range.

‡We acknowledge that our fit is not quite as good as that of Olufsen et al. [9]. However, part of this is likely due to a
small error in the network description in [9] that makes reproduction of their results impossible. Figure 1 and Table 1 of
Olufsen et al. [9] indicate that, in their simulations, the subclavian arteries are terminal vessels (i.e., the radial and ulnar
arteries are not included). Measured data at points E and J (Figure 2) would then appear to be measured at different
points along the same uninterrupted vessel. However, the average flow rate over one period at point J is roughly 25% of
that at point E. Flow conservation principles clearly imply that this is a contradiction. In [4], Azer and Peskin performed
simulations on the network described in [9]. Azer and Peskin’s simulations agreed reasonably well with the measured
MRI data, except at point J where they differed from the data by roughly 400% (see [4], Figure 16, bottom left pane). The
most likely explanation is that in the simulations of Olufsen et al., the authors included a bifurcation at the distal end of
the subclavian artery that was omitted from their Figure 1 and Table 1. Consultations with Olufsen have not managed to
clarify this point. Making an educated guess as to the omitted vessels, we allow the subclavian arteries to bifurcate into
the radial and ulnar arteries, and use data for the radii and lengths of these arteries from Reymond et al. [43]. Despite
this uncertainty in the network structure, we obtain good agreement between our simulation results and measured data.
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Figure 3. Comparison between simulated flows (blue) and measured data (red) for the systemic arterial tree.
Time t is measured in seconds (s) and flow Q in cm3/s. The locations at which measurements were taken

are denoted on Figure 2.

Figure 4. Schematic of the Circle of Willis; vessel name and size are given in Table III. Waveforms indicate
inlets while trees signal outlets.

3.2. Circle of Willis simulation

The structure of the considered vascular network is displayed in Figure 4. Vessel radii and length
measurements are given in Table III. Velocity data were obtained using digital transcranial Doppler
technology§ at locations approved by the Institutional Review Board at the Beth Israel Deaconess

§PMD 150, Terumo Cardiovascular Systems and Spencer Technologies Inc, Ann Arbor, MI and Seattle, VA USA.
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Table III. Names and measured length/radii data (in cm)
for the Circle of Willis (Figure 4).

Name r0 L

1 BA 0.15 0.825
2 R. PCA 1 0.112 0.333
3 L. PCA 1 0.112 0.333
4 R. PCA 2 0.110 0.756
5 L. PCA 2 0.110 0.756
6 R. PCoA 0.0986 1.00
7 L. PCoA 0.0986 1.00
8 R. ICA 0.210 4.81
9 L. ICA 0.210 4.81
10 R. MCA 0.134 2.11
11 L. MCA 0.134 2.11
12 R. ACA 1 0.170 1.07
13 L. ACA 1 0.100 1.07
14 ACoA 0.100 0.20
15 R. ACA 2 0.115 2.30
16 L. ACA 2 0.115 2.30

Data are from [13]. BA, basilar artery; PCA, posterior cere-
bral artery; PCoA, posterior communicating artery; ICA, in-
ternal carotid artery; MCA, middle cerebral artery; ACA,
anterior cerebral artery; AcoA, anterior communicating artery.

Figure 5. Left: measured velocities at the inlets. Right: representative difference between simulation results
obtained with periodic inflows (blue) and raw inflows (red) in the anterior, middle, and posterior cerebral

arteries (here, for the left posterior cerebral artery).

Medical Center. Specifically, our dataset includes velocity measurements at all inlets and outlets of
the Circle of Willis (Figure 4). While transcranial Doppler has good time resolution (as opposed
to MRI, for instance), the insonation angle, that is, the angle between the ultrasound probe and the
vessel, is usually unknown. This clearly affects negatively to the accuracy of the measurements (see
Bragg et al., Cerebral blood flow measurements: intersubject variability using MRI and Transcranial
Doppler, 2014, in preparation for more details).

Pressure was measured using a continuous noninvasive finger arterial blood pressure monitor
in supine position¶. Vessel dimensions were measured from 3D MR angiography images (time of
flight) using the Medical Image Processing, Analysis, and Visualization software from the Biomed-
ical Research Services Station, NIH, Bethesda, MD; for each vessel, calculations were repeated at
three locations and averaged. The accuracy is conservatively estimated atC=�0:4mm, based on the
image resolution. Measured velocities were imposed at the three inlets [basilar artery (BA) and left
and right internal carotid arteries (ICAs)], see Figure 5, left, and the experiment is run to simulate 8
seconds in real time. The generalized impedance boundary condition was imposed at the six outlets
[left and right anterior cerebral arteries (ACAs), MCAs and posterior cerebral arteries (PCAs)]. The
simulation was calibrated by adjusting the values of � to best match the velocity at the outlets.

¶Ohmeda, Monitoring Systems, Englewood.
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Figure 6. Comparison between simulated flows (blue) and measured data (red) for the Circle of Willis. Time
t is measured in seconds (s) and velocity U in cm/s. See comment on data inconsistency in the text.

Representative results are displayed in Figure 6. The simulation results agree reasonably well
with the data, and we now explain how the mild discrepancy in that figure stems either from errors
in the measured velocity or geometric data for the Circle of Willis. Figure 6 clearly shows that our
simulation results undershoot the measured velocities. We note however that the total measured flow
into the Circle of Willis (contributions from the BA and ICAs) is 12.5% smaller than the combined
measured outflow through the ACAs, MCAs and PCAs. Since the hemodynamic model conserves
flow rate, we would expect that the simulated outflows would also be smaller than the measured
outflows. This is precisely the case, with the simulated average outlet velocities being 12.1% less
than the measured velocities. We hypothesize that, absent this systematic bias in the measured data,
the agreement between model and data in Figure 6 would be improved even further.

Unlike the previous experiment (Section 3.1) where inflow data were imposed at only one loca-
tion, the present simulation involves three inlets. Measurements at different locations are usually not
taken simultaneously. Typically, in simulations like ours, the various inflow signals are put in phase
before computation. To measure the effects of such phase shifts, we first run the previous experi-
ment with in-phase and fully periodized inflows obtained from the measurements. The experiment
is then repeated with the raw (non-periodic) data from Figure 5, left. The flowrates in the ACAs,
MCAs, and PCAs are only minimally affected as shown by Figure 5, right.

While the overall flowrates in the communicating arteries are relatively small, they undergo dra-
matic changes when switching from periodized inflow conditions to the actual raw measurements
(Figure 7).

In particular, the flowrates in both the right posterior communicating artery and the anterior
communicating artery change by over 200%. The asymmetry of the results, visible from direct com-
parison of the left and right posterior communicating artery flows, results from the asymmetry of
the ACAs for that specific patient (Table III). The high sensitivity to asymmetry and phase shifts of
flowrates in the communicating arteries was also noted in [45]. Despite this high sensitivity of the
flow rate time series values in these vessels, the time averaged flow rate at each point in the Circle of
Willis remains nearly invariant, changing by no more than 5% between the periodized and raw data
simulations. For example, despite the substantial variation between the two flowrates in the anterior
communicating artery (Figure 7, bottom), the time averaged flowrates were nearly identical for the
periodized data simulation (�0:0251 cm3/s) and raw data simulation (�0:0262 cm3/s).

3.3. Cerebral autoregulation simulations

We now incorporate the effects of cerebral autoregulation into the structured tree boundary condition
using the procedure from Section 2.5. Specifically, we analyze autoregulatory responses to changes
in mean aortic pressure (MAP) under three scenarios: a step-wise decrease in MAP [27, 37, 46],
low frequency sinusoidal oscillations in MAP (which may be induced by deep breathing [47]), and

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2014; 30:1294–1313
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Figure 7. Difference between simulation results obtained using periodic inflows (blue) and raw inflows (red)
in the left posterior communicating artery (top), right posterior communicating artery (middle), and anterior

communicating artery (bottom).

a gradually increasing MAP [46]. For each of these three cases, we obtain results agreeing well with
clinically measured data.

The above scenarios are considered in the general framework of the systemic arterial tree sim-
ulation of Section 3.1. We implement autoregulation at each of the six outlet vessels of the Circle
of Willis (R/L MCA), R/L ACA, and R/L PCA, see vessels 45/46, 49/50 and 54/55 in Figure 2).
While we only incorporate autoregulation in the cerebral vessels because this is where the mea-
sured data was collected, this procedure could easily be extended to other vessels. We determine the
equilibrium pressure and flow values used in the autoregulation model equations (10, 12) by time
averaging the values obtained by the baseline simulation from Section 3.1 at the distal end of each
of the six respective outlet vessels of the Circle of Willis (these flow rate values are displayed in
Figure 8, right). We set the autoregulation gain parameter GAR D 4 in each cerebral outlet vessel.
This value was obtained through trial and error so as to yield results in agreement with reported clin-
ical measurements [27, 46] where flow returns to baseline within 5–7 s for individuals with healthy
autoregulatory function (Figure 9). The return time to baseline can be considerably longer in indi-
viduals with impaired autoregulation [46]. We keep the value of GAR unchanged for the final two
simulations and also obtain results agreeing well with clinical measurements.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2014; 30:1294–1313
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Figure 8. Baseline simulation results from Section 3.1. Left: pressure at the proximal end of the aorta. Right:
flow rate at the distal end of the right posterior cerebral artery (blue, solid line), middle cerebral artery (red,
dashed line), and anterior cerebral artery (black, dotted line). The periodic extension of the aortic pressure is
modified according to the experiment at hand and then imposed as an inlet boundary condition. The cerebral

flow rate information is averaged to compute Qeq in (10) and (12).

Figure 9. Aortic pressure (top left) and velocity (top right), xAR (bottom left), and RAR (bottom right) in
the left posterior cerebral artery. The blue curves correspond to the exact values of each quantity, and the red

curves are a moving average over one heartbeat.

In each of the three experiments in the succeeding text, we impose the following pressure inflow
boundary condition at the proximal end of the aorta

P.t/ D Pbaseline.t/f .t/;

where Pbaseline is the periodic baseline pressure at the aorta from the simulation performed in
Section 3.1 (Figure 8, left). We modify this baseline pressure through the use of different functions
f .t/ for each experiment. The corresponding simulations are identical aside from the choice of f .t/.

First, we simulate the effects of a sudden 20% drop in MAP. This is modeled through f .t/ D
0:9C0:1 tanh.20.5T � t //. The period of the baseline simulation is T � 1:13 s. The resulting aortic
pressure is displayed in the top-left pane of Figure 9. This pressure drop induces a corresponding
near-immediate flow decrease. After this initial decrease in flow, autoregulatory mechanisms reduce
the cerebral tree resistance and the flow subsequently returns to baseline levels (Figure 9). This
behavior has previously been observed experimentally [27, 37, 46] and numerically [34, 35].

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2014; 30:1294–1313
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Figure 10. Left: aortic pressure and velocities in the R/L middle cerebral arteries with healthy cerebral
autoregulation. Right: aortic pressure and middle cerebral artery (MCA) velocities with impaired autoregu-
lation in the right MCA territory. The blue curves correspond to the exact values of each quantity, and the

red curves are a moving average over one heartbeat.

In [47], Diehl et al. obtained clinical measurements of the effects of sinusoidal oscillations of
MAP on cerebral blood velocity (CBV). These MAP oscillations had a period of roughly 10 s and
were induced by instructing subjects to breathe in or to breathe out every 5 s. Diehl et al. found that
this low frequency sinusoidal oscillation in MAP induced a similar oscillation in CBV. As a test
of an individual’s cerebral autoregulatory function, they measured the phase shift between the low
frequency oscillations of MAP and CBV. Under the assumption that this phase shift would be 0 ı in
the absence of autoregulation, the authors interpreted a larger phase shift angle as indicative of more
optimal autoregulatory function. Their experiments supported this idea, as the average phase shift
was 51:7 ı for patients with occlusive cerebrovascular disease, 26:8 ı for patients with arteriovenous
malformations, and 70:5 ı for healthy patients.

Our model reproduces many of the clinical observations from [47] (Figure 10). The inlet boundary
condition consists in setting the pressure at the aortic level to be equal to the baseline pressure from
the simulation in Section 3.1 multiplied by f .t/ D 1 C 0:15 sin.2�t=10T /, where T is again the
period of the baseline simulation. We take the value GAR D 4 at each outlet to study the MAP/CBV
relationship in the case of a patient with healthy autoregulatory function. To simulate the effects
of impaired autoregulation due to a pathological condition, we set GAR D 0 for the three outlet
vessels on one side of the brain (R ACA, R MCA, and R PCA). For each case, the low frequency
MAP oscillation induces a corresponding low frequency CBV oscillation. For the healthy case, we
observe a phase difference of 76:5 ı, agreeing well with the measured value of 70:5 ı reported by
Diehl et al. [47]. For the simulation with impaired autoregulation on one side of the brain, we see
a phase difference of nearly zero .�1 ı/ on the pathological side and a normal phase difference of
76 ı on the healthy side, which also agrees well with the clinically measured results of Diehl.

Finally, we simulate the experiments of Tiecks et al. [46], who studied the effects of continuous
phenylephrine injection on CBV. This injection induced a gradual increase of MAP to roughly
20 mmHg above baseline. To simulate this, we set the aortic pressure to be equal to the baseline
pressure multiplied by, for t between 10 and 60, f .t/ D 1C 0:2.t � 10/=50. We set f .t/ D 1 for
t less than 10, and f .t/ D 1:2 for t bigger than 60 (Figure 11). In the absence of autoregulation,
this pressure increase would induce a corresponding increase in CBV. However, Tiecks et al. found

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2014; 30:1294–1313
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Figure 11. Left: Imposed pressure at the aorta. Right: velocity in the left anterior cerebral artery, which
remains nearly unchanged despite upstream pressure variations due to autoregulation. Velocities in other
cerebral arteries show similar behavior. The blue curves correspond to the exact values of each quantity, and

the red curves are a moving average over one heartbeat.

that in the presence of an intact autoregulatory mechanism, CBV shows almost no change over the
course of this pressure increase. Our simulations agree well with these clinically measured results—
although there is some widening of the CBV pulse, the heartbeat-averaged CBV remains nearly
constant in our simulations (Figure 11).

4. DISCUSSION

4.1. Computational cost

The computational cost of the impedance condition is proportional to the number of different vessels
in the vascular tree. For a generic tree with ` generations, which number increases exponentially
with ` while for the fractal trees considered in Section 2.2, it is only O

�
`2
�
. We precompute the

impedance weights from (6) for each outflow vessel; this corresponds to 2N evaluations of the
IMPEDANCE function per outflow vessel, where N D ceil.1=�t/. Each evaluation of IMPEDANCE

requires O
�
`2
�

floating point operations. Typically, ` is no more than 30, resulting in a cost of a few
thousand floating point operations per evaluation.

In short, the boundary condition represents a very small fraction of the overall cost of the com-
putational simulations. However, the cost of the implementation described in Section 2 may be high
if one requires tens of thousands of time steps per second, as may be the case if explicit time step-
ping is used. In this case, a simple way to extinguish the high computational cost would be to use a
coarser time mesh for the convolution (6) than is used for the differential equation timestepping. This
approach would require only mild modifications to the algorithm, and the fact that the impedance
weights do not oscillate rapidly [10, 17] suggests that there would be little degradation to numer-
ical accuracy. In our simulations, this procedure is not required because we use an implicit Euler
timestepping routine with a time step of �t D 0:0025 for the systemic arterial tree, and �t D 0:01
for the Circle of Willis.

4.2. Autoregulation

We propose a physiologically based, yet computationally inexpensive, method for incorporating
autoregulatory effects into vascular trees. In developing this method, we make a number of simpli-
fying assumptions which represent possible sources of inaccuracy. First, only vessels whose radii
fall under a strict threshold value are assumed to adaptively dilate/constrict. In addition, the radii
are adapted through multiplication by a single, time varying factor. The effects of inhomogenous
autoregulatory modification of the vascular tree merits further study. Such effects could likely be
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Table IV. Tiered structure used in [17].

radius range � � 

250�m < r 10 2.50 0.4
50�m � r � 250�m 20 2.76 0.6
r � 50�m 30 2.90 0.9

The parameters � and  are defined by r	p D

r
	
d1
C r

	
d2

and  D
�
rd2
rd1

�2
.

incorporated into the structured tree in a straightforward manner. Some error is also introduced
through our method of incorporating the effects of a changing microvasculature through a simple
parametrization (9). However, we feel that the error introduced by this parameterization is small
since, in spite of its simplicity, it leads to remarkably accurate results as displayed in Figure 1.

Despite the aforementioned limitations, our approach described in Section 2.5 provides a pow-
erful new tool for incorporating autoregulation in hemodynamic simulations and does so through a
combination of computational simplicity and physiological grounding. Furthermore, it is compatible
with a wide class of existing autoregulation models.

4.3. Calibration

Most of the parameters defining the impedance condition can be measured and therefore the need
for calibration is greatly reduced. The results from the previous section were obtained by calibrating
the length to radius ratio � individually for each tree. This follows the approach from [4, 18] and
provides a mechanism to control the relative impedance between different outlets. For the systemic
arterial tree simulation, we used values of � between 10 and 60. For the Circle of Willis simulation,
our calibration procedures yielded values of � ranging from 13 to 19.

The aforementioned need for calibration is indicative of some shortcomings of the tree modeling.
Indeed, there is ample physiological evidence that the scaling parameters defining a tree are not
constant through it. While the use of a generic tree (with no fractal structure) is too computationally
cumbersome, the tiered structure approach from [18] can be emulated and generalized.

For instance, the values given in Table IV are in agreement with most of the available data such as
[48, 49] for the asymmetry of the vessels, [49–51] for the size of the vessels and [49, 52, 53] for the
length to ratio parameter �. We have successfully used these values in [17] in the case of the exper-
iment from Section 3.1 with no calibration whatsoever. This very promising result does not directly
generalize to organ specific simulation (such as the Circle of Willis simulation in Section 3.2),
possibly because organ specific tree geometries should be developed.

In conclusion, the proposed method is efficient and reliable for general transient hemodynamics. It
has the advantage of involving physiological parameters. Although, in this work, we required some
calibration to match simulation results to measured data, we hypothesize that the need for calibration
could be decreased further by the adoption of more realistic, organ-specific tree structures. These
trees are constrained by the particular shape of the organ that they inhabit, and different organ shapes
may induce different tree branching properties [54–57]. It may be possible to determine these organ
specific tree properties by performing a constrained constructive optimization procedure to grow
optimal trees within various organ geometries. Such a procedure has already been performed by
Karch et al [58] to study the structure of the arterial tree between the epi- and endocardial layers of
the human heart.
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