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a b s t r a c t

The aim of this work is the quantification and prediction of rare events characterized by extreme inten-
sity in nonlinear waves with broad spectra. We consider a one-dimensional nonlinear model with deep-
water waves dispersion relation, theMajda–McLaughlin–Tabak (MMT)model, in a dynamical regime that
is characterized by a broadband spectrum and strong nonlinear energy transfers during the development
of intermittent events with finite-lifetime. To understand the energy transfers that occur during the de-
velopment of an extreme event we perform a spatially localized analysis of the energy distribution along
different wavenumbers by means of the Gabor transform. A statistical analysis of the Gabor coefficients
reveals (i) the low-dimensionality of the intermittent structures, (ii) the interplay between non-Gaussian
statistical properties and nonlinear energy transfers between modes, as well as (iii) the critical scales (or
critical Gabor coefficients) where a critical amount of energy can trigger the formation of an extreme
event. We analyze the unstable character of these special localized modes directly through the system
equation and show that these intermittent events are due to the interplay of the system nonlinearity,
the wave dispersion, and the wave dissipation which mimics wave breaking. These localized instabilities
are triggered by random localizations of energy in space, created by the dispersive propagation of low-
amplitude waves with random phase. Based on these properties, we design low-dimensional functionals
of these Gabor coefficients that allow for the prediction of the extreme event well before the nonlinear
interactions begin to occur.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Extreme or rare events have attracted substantial attention in
various scientific fields both because of their catastrophic impact
but also because of the serious lack of specialized mathematical
tools for the analysis of the underlying physics. Important exam-
ples can be found in (i) the environmental field: roguewaves in the
ocean [1–4], extremeweather and climate events [5,6], and (ii) the
engineering field: overloads and failures in power grids [7,8], sta-
bility loss and capsizing of ships in mild waves [9]. For all of the
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above applications it has now been well established that extreme
events occur much more frequently than it was initially believed
and that their traditional characterization as ‘rare events’ (espe-
cially in a Gaussian context where a rare event has practically zero
probability) severely underestimates the frequency of their occur-
rence. Therefore, it is important to study them more thoroughly
and develop effective algorithms for their prediction.

Extreme events refer to system responses with magnitude that
ismuch larger than the typical deviation that characterizes the sys-
tem response. Of particular interest are extreme events that occur
far more likely than Gaussian statistics would suggest. Interest in
such heavy-tailed behavior is notmerely academic, as heavy-tailed
statistics have been observed both numerically [10] and experi-
mentally [11] in the context of directional water waves. In such
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cases it can be concluded that traditional analysis tools restricted
to second order statistics would not be sufficient for their under-
standing. Apart from their intermittent properties, another man-
ifestation of the non-Gaussian character of extreme events is the
strong localization of energy in (physical or modal) space—a situ-
ation that is inherently connected with non-linear dynamics and
transient or persistent instabilities, which has been shown (see
e.g. [12,13]) to be an important factor that can lead to non-Gaussian
statistics.

These characteristics also define the modeling challenges for
the study of these systems, with the most important being the in-
terplay of a few intermittent modes with a large number of modes
that act as a ‘reservoir’ of energy for the former. In the case con-
sidered in this work (the MMT equation), this large set of modes
is usually characterized by a broadband spectrum consisting of
dispersive waves with weakly non-Gaussian statistics that propa-
gate and sporadically give rise to extreme, localized events. In con-
trast to this large set of waves, extreme events are characterized
by strong nonlinear energy transfers and non-Gaussian statistics.
Therefore, we have on the one hand a nearly Gaussian ‘heat bath’
of waves that propagate in the presence of dispersion which leads
to energy localization in randomscales andplaces, and on the other
hand a nonlinear mechanism that uses the former as excitation to
generate extreme events [14].

It is clear from the above discussion that amathematical frame-
work able to handle problems characterized by extreme events
should include higher order statistics and also should be able to
deal with the inherent nonlinear character of the underlying dy-
namics. However, the computational cost associated with these
requirements would be enormous since (i) the number of physi-
cal degrees of freedom is usually very large and (ii) because the
description of non-Gaussian properties and in particular the de-
scription of rare events that ‘live’ in the tails of the distribution re-
quires a substantial amount of realizations which is very hard to
obtain and process in a direct Monte-Carlo framework. In addition,
a purely statistical understanding cannot provide a rigorous anal-
ysis of the underlying physical mechanisms.

On the other hand, order-reduction approaches based, for ex-
ample, on Polynomial Chaos expansions or Proper Orthogonal
decompositions have proven to be of limited applicability in non-
linear systems with intermittency [15]. Due to their localized spa-
tial and temporal characters, extreme events carry only small
amounts of energy comparedwith other globalmodes that charac-
terize the full response field. Therefore, standard order-reduction
techniques will most likely miss the essential parts of the extreme
event dynamics.

To simulate the dynamical mechanisms that lead to the gen-
eration of extreme events, we use the MMT model, a one-
dimensional nonlinear dispersive equation originally proposed by
Majda, McLaughlin, and Tabak to assess the validity of weak tur-
bulence theory [16]. MMT admits four-wave resonant interactions
and, when coupled with large-scale forcing and small-scale damp-
ing, admits a rich family of spectra exhibiting direct and inverse
cascades [17,18]. Zakharov et al. have also analyzed the MMT
model in detail and have used large amplitude coherent structures
present in MMT as models of extreme ocean waves [19–21]. In
this work, we analyze in detail the ‘solitonic’ coherent structures
in the focusing MMT, which have also been investigated by Cai
et al. [18]. In their early stages, these localized structures resemble
self-similar spatial collapses and rapidly transfer energy to small
scales where it is dissipated [18]. We are particularly interested
in these localized structures as they generate states which are ex-
treme compared to the benign background out of which they arise.

In the present work, we first aim to develop analytical and
numerical tools in order to understand how these localized ex-
treme events are triggered by spatially localized perturbations in
theMMTmodel. We illustrate that there is a critical spatial length-
scale and a critical amount of energy associatedwith it that leads to
the occurrence of extreme solutions. This critical scale is the result
of the interplay between wave dispersion, wave nonlinearity and
selective dissipation that occurs in high wavenumbers. For pertur-
bations of a zero background state we are able to analyze this phe-
nomenon directly by deriving a family of scale invariant solutions.
However, the critical amount of energy depends also on the back-
ground energy level of the system, the effects of which we analyze
numerically. In contrast to the standard linearized analysis, which
considers small Fouriermodeperturbations about a given state, the
framework presented here considers spatially localized perturba-
tions that are not necessarily small.

We illustrate that these extreme events are characterized by
low-dimensionality and we use a spatially localized basis, a Gabor
basis, with localization characteristics tuned according to the re-
sults of the previous conclusions. Using the projected information
of the extreme events to this localized basisweperforma statistical
analysis of the Gabor coefficients to reveal the strongly non-
Gaussian character associated with the strongly nonlinear inter-
actions of these modes during an extreme event. Note that this
statistical structure, which is directly connected to the nonlinear
energy transfers that take place, is otherwise ‘buried’ in the broad-
band spectrum of the full wave field and its only signature in the
stochastic field response is the heavy tail statistics.

Finally, we formulate predictive functionals that efficiently
characterize the domain of attraction to the extreme event solu-
tions. These predictive functionals are formulated in a probabilistic
fashion in terms of the Gabor coefficients that correspond to the
critical lengthscales. Given the current information of the wave-
field, they provide the probability of occurrence of an extreme
event in a later time instant. Note that the propagation of waves
(having random phases) in the presence of dispersion creates con-
ditions for localization of energy in arbitrary scales and positions
in space. The formulated probabilistic functionals assess these ran-
dom localizations of energy and quantify the probability that they
will lead to an occurrence of an extreme event in the future.

2. A one-dimensional, dispersive nonlinear prototype model
with intermittent events

We consider the following one-dimensional partial differential
equation originally proposedbyMajda,McLaughlin, andTabak [16]
for the study of 1D wave turbulence:

iut = |∂x|
α u + λ |∂x|

−β/4
 |∂x|−β/4 u

2 |∂x|
−β/4 u


+ iDu (1)

where u is a complex scalar. On the real line, the pseudodifferential
operator |∂x|

α is defined through the Fourier transform as follows:

|∂x|α u(k) = |k|αu(k).
This operator may also be defined analogously on a periodic do-
main. The MMT equation was introduced on the basis of a simple
enough model to test thoroughly the predictions of weak tur-
bulence theory. In the context of dispersive nonlinear waves it
provides a prototype system with non-trivial energy transfers
between modes or scales, non-Gaussian statistics with heavy tails,
and intermittent events with high intensity, while remaining ac-
cessible to high resolution simulations [16–18,22]. Therefore, it is
an ideal basis to assess the performance of probabilistic quantifi-
cation algorithms for the occurrence and prediction of extreme
events.

In the presentwork the parameterα is set to 1/2 as thismatches
the dispersion relation for deep water waves ω2

= |k|. Setting
α = 2 and β = 0 in (1) yields the nonlinear Schrödinger equation
(ignoring the dissipation term). As in [16] we include dissipation
at small scales (modeling e.g. wave breaking in the context of
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Fig. 1. Probability density for the real part of u for simulations of NLS and MMT
(α = 1/2, β = 0).

water waves) through a selective Laplacian operator Du, defined
in Fourier space:Du(k) =


−(|k| − k∗)2û(k) |k| > k∗

0 |k| ≤ k∗.

Similar dissipation models have been used in more realistic set-
tings involving ocean water waves [23]. The critical wavenumber
is taken as k∗

= 500 which is a value that is large enough so that
it allows for the development of nonlinear instabilities that lead
to extreme waves and small enough to create energy cascades in
higher wavenumbers and thus, allow for these waves to exist only
for finite time.

For the nonlinearity coefficient we choose λ = −4. Our goal
here is to study a prototype system that generates rare events of
extreme intensity. With this in mind, we use λ < 0, corresponding
to the focusing case, which gives rise to intermittent extreme
events generated by collapsing solitons [17,18].We chooseλ = −4
since, with the chosen initial data (see the next paragraph), this
value corresponds to 3–4 extreme events per 100 time units (100
time units being a moderately long time length relative to the
time scales in the considered MMT simulations). This choice is not
based on physical principles—the chosen extreme event frequency
is a happy medium where such events occur often enough to be
characterized statistically by Monte Carlo simulation but sparsely
enough to be considered rare. Although we chose to vary λ to
control the extreme event frequency, an identical effect could have
been obtained by fixing λ = −1 and merely rescaling u(x, 0).

We consider the evolution of a sum of Fouriermodeswith inde-
pendent, uniformly distributed random phases, meaning that ini-
tially u has a nearly Gaussian distribution. For a linear model, the
distribution would remain nearly Gaussian as the modes evolve
independently. Interestingly, even in simulations of the focus-
ing nonlinear Schrödinger equation (NLS) we find that u remains
nearly Gaussian. However, for the MMT model we find that the
distribution u develops heavy tails with an exponential decay rate
(see Fig. 1). We stress that although for the simulations considered
here theNLS simulations generate Gaussian statistics, this is not al-
ways the case. Heavy-tailed statistics have been observed by other
authors in numerical simulations of the focusing NLS equation
[24,10].

The heavy tails in solutions of MMT are induced by the inter-
mittent formation and subsequent collapse of localized extreme
events arising out of a nearly Gaussian background. Fig. 2 displays
the origination and disappearance of such an extreme event. In
their early stages these extreme events resemble the collapses that
are present in focusingMMTwith nodissipation. In these collapses,
which have been described by Cai et al. [18], energy is dramatically
transferred to smaller scales and the solution experiences a singu-
larity in finite time. In our simulations, the small-scale dissipation
included in (1) (modeling wave breaking in the context of water
waves) ensures that u remains regular for all times. Collapse dy-
namics have been found to induce heavy-tailed statistics in other
situations as well, such as the damped-driven quintic 1D nonlinear
Schrödinger equation [25].
2.1. Numerical simulation and computation of statistics

We solve (1) for x ∈ [0, 2π ] with periodic boundary condi-
tions using a Fourier method in space combined with a 4th order
Runge–Kutta exponential time differencing scheme [26,22]. This
scheme requires evaluation of the function φ(z) = (ez − 1)/z.
Naive computation of φ can suffer from a numerical cancellation
error for small z [27]. We use a Padé approximation code from
the EXPINT software package, which does not suffer from such er-
rors [28]. We use 213 Fourier modes with a time step of 10−3; re-
sults in this work were insensitive to further refinement in grid
size.

For the statistical studies performed in this work, we evolve a
sum of 31 Fourier modes with independent, uniformly distributed
random phases. We compute statistics by averaging over time and
space over 300 ensembles, each spanning 100 time units (t = 100
to t = 200). There is no external forcing in our simulations and all
the energy of the systemcomes through the initial conditionswhile
dissipation occurs whenever an extreme event takes place. To this
end, we do not observe an exact statistical steady state in our
simulations, but after an initial transientwhere amoderate amount
of energy is dissipated through selective damping, the solution
settles to a nearly (or very slowly varying) statistical steady state
where the L2 norm decays slowly (see Fig. 3). We focus on this
slowly varying regime where roughly 2–4 extreme events occur
per simulation in the time window t ∈ [100, 200], and, as shown
in Fig. 3, these extreme events are uniformly prevalent (roughly)
throughout this time window (although they are slightly more
common for earlier times). In Fig. 3, extreme events are identified
as local maxima of |u| that exceed 2.5. This threshold value of 2.5
corresponds to 8 typical deviations of the wave field, consistent
with the information definition of rogue waves in the ocean [1].

3. Nonlinear instabilities induced by spatially localized energy

In this section we examine the role of spatially localized energy
in the formation of an extreme event. More specifically, we define
the energy E of a solution as

E , r2 =

 u2(x)
 dx,

where r is the L2 norm of the solution, which is conserved by un-
damped MMT [19]. In the undamped MMT equation, localized ini-
tial data with energy above some critical level leads to a finite time
blowup [18,19]. Here we examine how this critical energy level
varies with the degree of initial energy localization, as well as the
energy of the background state, in the presence of selective dissi-
pation. Both of these parameters are important to determine the
critical scale that is most sensitive for the formation of an extreme
event. For the zero background case, we are able to analytically de-
termine this relationship by deriving a scale invariant family of so-
lutions.We investigate the non-zero background case numerically.

Zero background energy: scale invariant solutions. We begin our
analysis by focusing on localized perturbations whenwe have zero
energy background in the system. More specifically, we consider a
family of initial data of the form u(x, 0) = u0(x; c, L) = ce−2(x/L)2

and determine how the critical energy level required for blow-up
depends on the lengthscale L. To do so, we derive an L-parametric
family of solutions wL, L > 0, defined by the scaling of a given
solution u(x, t)

wL(x, t) =
1
Lp

u

x
L
,
t
Lq


.

To determine p and q, we plug this ansatz into MMT with no dissi-
pation, which gives:
i

Lp+q
ut =

1
Lp+α

|∂x|
αu +

λ

L3p−β
|∂x|

−β/4
|∂x|−β/4u

2 |∂x|
−β/4u


.
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Fig. 2. Example of an extreme event arising out of a weakly non-Gaussian ‘heat bath’ of dispersive waves with random phase.
Fig. 3. Left: decay of L2 norm of the solution; after 100 time units the decay rate becomes small. Right: locations of extreme events in an ensemble of simulations.
So w is also a solution to MMT if q = α and p = (α + β)/2, giving
us the following family of solutions:

wL(x, t) =
1

L(α+β)/2
u

x
L
,

t
Lα


.

Therefore, if for a reference lengthscale L = 1, we have the critical
energy norm rcrit(1) (associated with an initial condition u0(x;
c∗, 1)) that leads to a blow-up solution, the corresponding critical
energy for initial data localized for an arbitrary lengthscale Lwill be

r2crit(L) =
1

Lα+β


u2
0

x
L
; c∗, 1


dx = L1−α−βr2crit(1).

Hence, the critical energy norm rcrit(L) required to initiate a blow-
up is given by

rcrit(L) = L(1−α−β)/2rcrit(1). (2)

We consider the special case α = 1/2, β = 0, which gives

rcrit(L) =
4√Lrcrit(1). (3)

Since the above function decreases to 0 as L becomes small, in the
deep water wave dispersion case only a small amount of localized
energy is sufficient to initiate a blow-up. This fact holds as long as
the exponent of L in (2) is positive, meaning β < 1 − α, or simply
β < 1/2 using the standard value of α = 1/2. Pushkarev and Za-
kharov [21] use β = −3 to study extreme waves, which is small
enough to ensure that this relationship between localization and
energy criticality still holds. In fact, withβ = −3we have rcrit(L) =

L7/2rcrit(1), so this relationship (rcrit decreasing as L decreases)
would presumably be even stronger than the β = 0 case we con-
sider.

Note that for the case that selective dissipation is present, very
localized amounts of energy will be rapidly dissipated. In particu-
lar, if energy is too localized, then the selective Laplacian damping
is dominant compared with the instability of the nonlinear terms
and the amplitude of u decreases relative to its initial state. How-
ever, for values of L that are not excessively small, we have a rapid
growth of the amplitude of u that leads to an energy cascade (see
the next section) to smaller scales and subsequent dissipation by
the selective Laplacian. In this way the highwavenumber damping
prevents the formation of a singularity due to continuous energy
transfer and accumulation to infinitesimally small scales and re-
sults in a finite lifetime for the extreme event (Fig. 2). This behavior
has been noted previously forMMTwith forcing and dissipation by
Grooms and Majda [22].

Therefore, in the dampedMMT, for each localization scale L that
is not excessively small we expect there to be a critical amount of
energy that will trigger a nonlinear instability resulting in an ex-
treme event. We expect that, except for excessively small values
of L, the above analysis will still hold and the dissipation will only
become relevant in the late stages of an extreme event where it
prevents the formation of a singularity.We quantify the critical en-
ergy for the damped systemusing two differentmeasures. First, we
compute the finite-time divergence of nearby (in terms of energy)
initial perturbations through the quantity

|∂rq(r, L)| ,

 ∂

∂r

max
x,t

|u(x, t; r)|

max
x

u(x, 0; r)

 .
This quantity is displayed by a color plot in Fig. 4. We use the sharp
ridge of |∂rq| to determine the critical energy level at which the
transition to extreme events occurs. Additionally, we determine
the critical energy level by determining the set of values (r, L) at
which q(r, L) > 1.5. The black curve in Fig. 4 outlines the region
where q exceeds this threshold value. This curve compares favor-
ablywith the results from the firstmethod. Also in Fig. 4wepresent
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Fig. 4. Critical energy norm of a localized perturbation that leads to the formation
of an extreme event for the undamped (red dashed curve) and the damped MMT
model in the absence of background energy. The latter is described in terms of the
finite-time divergence q of nearby trajectories (color map) and the maximum value
of the response field |u|. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

with a red dashed curve the critical energy norm for the undamped
system, given by (3). We emphasize that even though Fig. 4 was
generated by numerically solving (1) on a domain of size 16π with
periodic boundary conditions, these results do not change if the do-
main size is increased further due to the localization of these exam-
ples. This behavior contrasts sharply with similar experiments of
the nonlinear Schrödinger equation, where the values of |q| never
become large and the sharp gradient seen in Fig. 4 does not occur.

We note that for the case of the damped system the critical en-
ergy norm closely resembles the analytical prediction (3), which is
a result of the interplay between dispersion and nonlinearity. This
is the case until we reach the critical scale Lc , belowwhich dissipa-
tion is important and no extreme solutions can occur. To this end
this spatial scale Lc is the most sensitive to localized perturbations
i.e. it can be triggered with the lowest amount of energy, and it is
essentially the smallest scale where dissipation is still negligible.
The existence of this critical scale that triggers extreme events is
the result of the synergistic action of dispersion, nonlinearity, and
small-scale dissipation.

Case of finite background energy.We now consider the formation
of an extremeevent out of a backgroundwithnon-zero energy, that
is, we evolve initial data of the form u(x, 0) = b + ce−2(x/L)2 . We
first consider the case of small ratio c

b ≪ 1 where we can investi-
gate the evolution of u by performing a linearized stability analysis
about the following exact, spatially constant solution of MMTwith
arbitrary α and β = 0, u(x, t) = be−iλb2t .

For the nonlinear Schrödinger equationwith periodic boundary
conditions, this solution is unstable to Fourier mode perturbations
of wavenumber nwhen the following condition is satisfied:

n <
Lx
2π


−2λb2,

where Lx is the domain width. The above is known as the Ben-
jamin–Feir instability and has been studied extensively by many
authors [29–32].

In the context of the undamped MMT equation, the Ben-
jamin–Feir instability can be generalized. In particular one can
show that for the case β = 0, the spatially constant solution is
unstable if λ < 0 and

n <
Lx
2π


−2λb2

1/α
. (4)

Clearly, for α = 2, the above result agrees exactly with the clas-
sical Benjamin–Feir instability criterion of NLS. For NLS, u is the
envelope of a slowly modulated carrier wave, so the spatially con-
stant solution studied here corresponds to a plane wave solution
for the surface elevation oscillating at the carrier frequency. For
MMT with α = 1/2, there is a more complicated relationship be-
tween u and the associated surface elevation [21], but a spatially
constant u corresponds to a spatially constant surface elevation.
Here we have only analyzed the linearized stability of a single pe-
riodic solution to MMT (specifically, the 0-mode solution). For the
purposes of our analysis this is sufficient, but MMT admits a family
of periodic solutions whose linear stability has been documented
in detail by Rumpf and Newell [33].

We emphasize that although the Benjamin–Feir modulation in-
stability is present in both the focusing MMT and the NLS, its man-
ifestation is not the same in each case. We illustrate this fact by
numerical experiments involving no selective damping. For both
equations, we take λ = −4 and Lx = 2π , meaning that the critical
value of b in (4) is roughly 0.35. Values of b larger than this admit
at least one unstable mode, and positive b less than this value have
no unstable modes. We evolve initial data of the form u(x, 0) =

b + ϵ cos(x) with b ≈ 0.34 and b ≈ 0.36. For each value of b, we
set ϵ = 0.01. When b ≈ 0.34, the small perturbation does not
grow for theMMT or the NLS, agreeing with the linearized analysis
(see Fig. 5). For the NLS, unstable perturbations of this kind initiate
a nearly-periodic orbit where large, but bounded, coherent struc-
tures repeatedly appear and subsequently dissolve in a Fermi–
Pasta–Ulam-like recurrent cycle [34,32]. However, in the MMT,
these unstable perturbations grow continuously and collapse into
a singularity in finite time (see Fig. 5). This mechanism of collapse
initiation via modulation instability, which has also been studied
by Cai et al. [18], has significant implications for our critical energy
analysis for the nonzero background case. Although including high
frequency damping will prevent the formation of a singularity,
such damping will not prevent an extreme event from occurring
since it only becomes relevant after energy has been transferred
to the small scales; that is, after an extreme event has already oc-
curred (as in Fig. 2). Thus, if b and Lx satisfy the Benjamin–Feir in-
stability criterion (4) with n = 1, initial conditions of the form
u(x, 0) = b+ce−2(x/L)2 will initiate an extreme event for any c > 0.

Fig. 6 displays the critical energy norm of the perturbation
ce−2(x/L)2 required to initiate an extreme event for various values
of b and L. For b = 0, this critical amplitude is precisely the curve
described above and displayed in Fig. 4, and for large enough b this
critical amplitude is infinitesimal due to the Benjamin–Feir insta-
bility. For intermediate values of b, the critical amplitude presents
a smooth transition between the two theoretically understood
regimes. For b = 0, we noted previously that the more localized
the energy is, the smaller the amount of this energy is required to
initiate a blowup. This fact remains true for nonzero background
energy b until the point where b is large enough so that a Ben-
jamin–Feir instability occurs,which in this case (Lx = 8π, λ = −4,
α = 1/2) occurs at b = 0.25. The surface displayed in Fig. 6 is
another example showing that local, non-infinitesimal perturba-
tions can initiate extreme responses with background levels below
the Benjamin–Feir energy threshold as a result of the interplay be-
tween nonlinearity, dispersion and dissipation.

4. Statistics of nonlinear dynamics during an extreme event

So far we have examined the conditions that lead to extreme
wave solutions. In this section we will study the nonlinear inter-
actions taking place during the occurrence of an extreme event by
statistical analysis after projecting the solution u onto an appro-
priate localized set of modes. Given the localized character of ex-
treme events, global basis elements such as Fourier modes will not
be able to describe effectively their dynamical properties since, de-
spite their large amplitude, extreme events carry very small por-
tion of energy of the overall field spectrum.

To this end, it is more informative to choose a set of modes
which incorporate the localized character of the extreme events.
We use the following family of Gabor basis elements consisting of
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Fig. 5. Benjamin–Feir instability for the NLS equation (top) and the MMT model (bottom) with (α = 0.5, β = 0, λ = −4).
Fig. 6. Numerically computed critical energy norm of localized perturbations that lead to extreme events in the presence of background energy for the dampedMMTmodel
(α = 0.5, β = 0).
complex exponentials multiplied by Gaussian window functions:

vn(x; xc) , exp

−2

d(x, xc)2

L2


ei2πnx/L, n = 0, 1, 2, . . . (5)

where d(x, xc) = min(|x−xc |, 2π−|x−xc |) expresses the distance
from the center point xc measured in the periodic domain.We then
compute the Gabor projection coefficients of the solution.

Yn(xc, t) , ⟨u(x, t), vn(x; xc)⟩/∥vn(x; xc)∥2,

where ⟨·, ·⟩ denotes the standard L2 inner product. We noted in
Section 3 that there is a critical scale Lc ≈ 0.01 that is most sensi-
tive to the formation of an extreme event, in that the required en-
ergy to trigger an extreme event is smallest at this particular scale.
In practice, we have observed that these extreme events typically
originate by energy localization in a slightly larger scale than Lc .
This motivates our choice of L = π/100 ≈ 3Lc , which is still ex-
tremely sensitive to small perturbations (Fig. 4). After a sufficient
amount of energy is localized in this scale, an extreme peak is then
produced as energy is transferred into the smaller scales until it
reaches the scale at which selective dissipation is present.We have
chosen L = 0.031 based on this argument with the goal of using
the coefficient Y0 as an indicator of an upcoming extreme event.
In Fig. 7wepresent theGabor coefficients in space and timedur-
ing the occurrence of a pair of extreme events. More specifically, in
the first row (left) we display the envelope |u| during the forma-
tion of a pair of extreme waves in the (x, t) space. In the second
row, we show the Gabor basis elements vn and in the third rowwe
show the modulus of the Gabor coefficients, |Yn|. In the top-right
panel we display the Euclidean sum of the oscillatory Gabor coef-
ficients, Eh =


n≥1 ∥Yn∥

2, which expresses the energy that ‘lives’
in high wavenumbers.

For the Gabor coefficients that correspond to the oscillatory ba-
sis elements (Y1, Y2, Y3, . . .), we note that away from the region of
the extreme events, wave components propagate almost indepen-
dently, according to the dispersion relation, in a close to linear fash-
ion. The energy of thenon-oscillatorymode (expressed through the
Gabor coefficient Y0) presents a more static (non-propagating) be-
havior with high intensity that builds up before the extreme event.
During the strongly non-linear phase (of the extreme response),
the Gabor coefficients of the oscillatory basis elements are not gov-
erned by the dispersion relation anymore, but they also present
a more static (non-propagating) behavior characterized by a large
build up of their energy. This is the result of a strong, nonlinear en-
ergy transfer initiated from the unstable lengthscale L, described



54 W. Cousins, T.P. Sapsis / Physica D 280–281 (2014) 48–58
Fig. 7. Energy transfer during an extreme event. Top row: extreme event shown in (x, t) space together with the high wavenumber energy Eh =


n≥1 ∥Yn∥
2 . Second row:

Gabor basis elements vn(x; 0). Third row: modulus of the Gabor coefficients ∥Yn(xc , t)∥.
by the non-oscillatory mode v0, and ending to higher wavenum-
bers where it is dissipated (Figs. 7 and 8).

Statistics and energy transfers during the dissipation phase. The
strong nonlinear energy transfer from the unstable scale L to
smaller scales is manifested by the non-Gaussian statistics of the
Gabor coefficients during an extreme event. The connection be-
tween nonlinear energy transfers and non-Gaussian statistics has
been rigorously established in [12,13,35] in the context of viscous
turbulent flows. Consider an orthonormal set ofmodesvi, i = 0, 1,
2, . . . , nc (although the modes (5) are not orthonormal, they are
nearly so) which are active during the occurrence of an extreme
event and let the background stage (i.e. the full stochastic solution
during a non-extreme regime) described by u (x, t). Then, theMMT
equation with α = 0.5, β = 0
ut = −i |∂x|1/2 u − iλ |u|2 u + Du
will take the projected form for each vi

dYi

dt
=

D − i |∂x|1/2


u, vi


+


k

Yk

D + |∂x|

1/2 vk, vi


− iλ

u +


k

Ykvk


2 

u +


k

Ykvk


, vi


. (6)

The growth rate of the energy of Yi will have the form

d |Yi|
2

dt
=

dYi

dt
Y ∗

i +
dY ∗

i

dt
Yi = 2Re


dYi

dt
Y ∗

i


.

Note that in Eq. (6) the first line on the right hand side involves
either energy conserving terms such as wave dispersion or neg-
ative definite terms such as dissipation (which occurs for high
wavenumbers only). All the other contributions towards changes
of |Yi|

2 will only occur through the nonlinear interactions of the
modes:

d|Yi|
2

dt


NL

= −2Re

iλ

u +


k

Ykvk


2 

u +


k

Ykvk


, vi


Y ∗

i


where the bar denotes ensemble average. We focus on the energy
transfer regime from the mode v0 to higher wavenumber modes
during an extreme event.

We compute the Gabor coefficients for 400 values of xc equally
distributed between 0 and 2π , with L ≈ 3Lc . We then classify each
point (xc, t) into two regimes: points nearby an extreme event and
points away from extreme events. For each of these groups, we
compute the joint statistics of the Gabor coefficients using data
from an ensemble of MMT simulations with random initial data
(details of these simulations are given in Section 2.1). Fig. 9 displays
the joint statistics of the imaginary parts of Y0, Y1, and Y2 near (left
subplot) and far (right subplot) from extreme events.

Away from extreme events the isosurfaces of the probability
density function are elliptical, indicating that the Gabor coeffi-
cients are nearly Gaussian in this regime. Moreover, the time os-
cillatory character of the wave components results in zero average
value (in the ensemble sense) for all the corresponding Gabor coef-
ficients Yi = 0, i = 1, 2, . . . (for both regimes). Due to this fact, as
well as the Gaussian distribution of the coefficients Yi in the non-
extreme events regime, the average change of their energy due to
nonlinear interactions becomes zero.

On the other hand, the statistics near extreme events are highly
non-Gaussian, with Y0 exhibiting a bimodal distribution. The real
parts of the Gabor coefficients are distributed similarly. This non-
Gaussian distribution is directly related to the energy cascade
from the non-oscillatory mode to the strongly dissipative, high
wavenumber modes.

Dynamics during the built-up phase of the extreme event. In
Fig. 10, we show how an extreme event trajectory emerges out of
the Gaussian background describing the heat bath of waves prop-
agating under the dominant effect of the dispersion relation. From
the same figure it is clearly illustrated how extreme events are as-
sociated with large values of |Y0|. The nature of this association is
particularly interesting: |Y0| becomes large just before (and after)
extreme events. An example of this behavior is displayed in Fig. 11,
where we observe the increase of |Y0| while the overall response
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Fig. 8. Energy transfer to higher wavenumbers during the occurrence of extreme events shown in terms of the moduli of the Fourier coefficients for the MMT model.
Fig. 9. Isosurfaces of the joint pdf of the imaginary parts of Y0, Y1 , and Y2 near to (left) and away from (right) extreme events.
Fig. 10. The red curves show trajectories of the imaginary parts of Y0 , Y1 , and Y2
during extreme events. The blue surface is an isosurface of the joint density function
for the imaginary parts of Y0, Y1 , and Y2 containing 97% of the total probability—this
shape is dominated by the Gaussian random waves that propagate with random
phase under the effect of dispersion and weak nonlinearity. (For interpretation of
the references to color in this figure legend, the reader is referred to theweb version
of this article.)

field |u| has regular values. This growth continues until we have
an extreme event and it is followed by a sudden drop that is as-
sociated with an energy transfer to high wavenumbers illustrated
by the energy Eh (as described previously). This agrees with obser-
vations by Cai et al. [18] that these extreme events form by focus-
ing energy to high wavenumbers until saturation at a critical scale,
at which point they radiate energy back to larger scales. We are
particularly interested in the predictive utility of the localized en-
ergy |Y0| buildup that occurs before extreme events, often 1–2 time
units in advance for the considered set of parameters.
This phenomenon agrees with our analysis from Section 3,
where we showed that a sufficient amount of localized energy is
sufficient to trigger an extreme event. These localizations of energy
occur randomly through the dispersive propagation of waves that
have random phases. Due to the localized nature of v0, the associ-
ated Gabor coefficient |Y0| measures such localized energy and is
thus an indicator of an extreme event in the near future. When the
extreme event occurs, energy is transferred into the more oscilla-
tory modes (v1, v2, . . .), but the Gabor coefficients associated with
thesemodes lack predictive utility since they grow simultaneously
with, rather than prior to, the extreme event (see Fig. 11).

5. Short-term prediction of extreme events

The Gabor coefficient Y0 is a measure of energy localized at a
particularly sensitive lengthscale, at which only a small amount of
energy is necessary to trigger an extreme event. Thus, large values
of |Y0| imply that it is highly likely that (1) an extreme event will
occur in the near future or (2) an extreme event has occurred in
the recent past (see Fig. 11). We now use this fact to develop short-
termpredictive capacity for extreme events. To do so,we first com-
pute, for various values of Y0, the following family of probability
distributions:

FY0(U) , P

 max
|x∗−xc |<L

t∗∈[t−1.5,t+1.5]

|u(x∗, t∗)| > U | |Y0(xc, t)| = Y0

. (7)

That is, given a particular value of |Y0(xc, t)|, we compute the prob-
ability that |u| exceeds U nearby. The timescale of 1.5 time units
has been chosen based on our observation of the time required for
the transition from large values of |Y0| to extreme values of |u|. We
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Fig. 11. Time evolution of |u|, |Y0|, and Eh at a spatial location of an extreme event.
The y-axis scale on the left corresponds to |u|; the right y-axis scale corresponds to
|Y0| and Eh .

compute these distributions from an ensemble of 300 simulations,
each spanning 100 time units (see Section 2.1 for simulation de-
tails).

In Fig. 12, we display the family of conditional density func-
tions corresponding to (7). Clearly there is a critical value of |Y0|

which, when exceeded, implies that a nearby extreme event is
highly likely. We stress that even though we compute the condi-
tional statistics of u(x∗, t∗) given |Y0(x, t)| for t∗ ∈ [t−1.5, t+1.5],
the large values of |Y0| above the bifurcation point in Fig. 12 do not
occur during the extreme event itself. These large |Y0| occur before
and after the extreme event-during the extreme event itself |Y0| is
not large (Fig. 11). As discussed below, the large values of |Y0| can
be discarded, since in our observation of many simulations large
|Y0| that occur after extreme events do not initiate energy transfers
to smaller scales. In some ways this is similar to the demodulation
phase of breather type solutions to nonlinear Schrödinger initiated
by the Benjamin–Feir instability [34,32]. Although a precise math-
ematical explanation of this phenomena would be meaningful, for
the purposes of this work the simple ad-hoc criteria (ignoring |Y0|

that occur just after extreme events) is effective. As we discuss be-
low, we obtain a predictive scheme with a false negative rate of
less than 1%.

It is straightforward to connect the bifurcation in the distri-
butions displayed in Fig. 12 to our theoretical analysis from Sec-
tion 3. When |Y0| > 1.1, the likelihood of a nearby extreme event
increases dramatically. We may use the definition of v0 to com-
pute the energy level at which this bifurcation occurs at the critical
lengthscale L = 0.031:

1.1∥v0∥ = 1.1


e−2(x/L)2 dx = 1.1

√
L 4


π/2 ≈ 0.22.

This critical energy value of 0.22 agrees well with our results from
Section 3, where we found that Gaussian initial data localized at
lengthscale L = 0.031 initiated extreme events if the energy level
exceeds approximately 0.2 (see Fig. 4). These results from Section 3
were performed for localized states with a zero background, but
the agreement of this analysis with the bifurcation energy level in
Fig. 12 is significant. Specifically, it suggests that the same localized
energy instability discussed in Section 3 for toy examples triggers
the formation of extreme events out of more complex states.

We now compute the probability of a nearby extreme event,
given a particular value of |Y0|. Here we define an extreme event
as an instance where |u| > 2.5. This value is greater than twice
the significant wave height-here taken to be four times the typical
deviation of thewave field (and is consistentwith the informal def-
inition of rogue waves in the ocean [1]). This probability, displayed
in the right half of Fig. 12, is simply FY0(2.5) from (7).

We now analyze the performance of the computed extreme
event probability data from Fig. 12 as a predictive scheme. At a
given time, we compute |Y0(xc, t)| for various values of xc and use
our compiled statistics (Fig. 12) to estimate the probability of an
extreme event. If this probability exceeds 0.8, we predict that an
extreme event will occur. Choosing a larger probability threshold
valuewould decrease our rate of false positives; choosing a smaller
value would increase this rate, but would have the benefit of in-
creasing the amount of time by which extreme events are pre-
dicted in advance. We found that a probability threshold of 0.8
provides a reasonable balance between these two effects (false
positive rate versus advanced warning time). Essentially the pre-
dictive scheme measures the probability that a given combination
of phases betweenwave components (the current formof thewave
field) belongs to the domain of attraction of an extreme wave.

We tested this scheme on 50 simulations of (1). These simula-
tions were not used to compute the statistics in (7) and Fig. 12. In
these simulations, we predicted an extreme event 191 times, and
155 correctly predicted an extreme event, meaning that the false
positive rate was only 18.9%. There was only 1 extreme event that
was not predicted by our scheme, which means that the false neg-
ative rate was less than 1%. As mentioned in Section 4, in addition
to preceding extreme events, large values of Y0 can occur after ex-
treme events as energy is being transferred to larger scales. How-
ever, large values of |Y0| in this particular situation do not actually
imply that an extreme event is forthcoming. To avoid false positive
predictions that such behavior would generate, we ‘‘turn off’’ our
predictive scheme in the spatial region nearby the extreme event
for the following 1 time unit. Since our false negative rate is less
than 1%, ignoring these large values of |Y0| immediately following
an extreme event does not meaningfully degrade the accuracy of
our predictive scheme.

In Fig. 13 we present the spatial distribution of the probabilis-
tic predictor (left) and the actual wave field (right) for one random
realization. As we observe the computed criterion captures accu-
rately not only the temporal but also the spatial position of the
extreme wave. The same conclusions can be drawn from Fig. 14
where our prediction scheme is often able to predict extreme
events a full 1–2 time units in advance.

6. Discussion and conclusions

We have examined the synergistic activity of nonlinearity, dis-
persion, and dissipation towards the formation of extreme events
in a one-dimensional prototype system that possesses four-wave
resonant interactions, the focusing MMT equation. The latter pro-
vides a relatively simple model of extreme events arising out of a
nearly Gaussian background with broad-band spectrum, mimick-
ing in thiswaymany features of roguewaves in the ocean. Through
analytical and numerical tools we have shown that the MMT is
highly sensitive to localized perturbations of a particular critical
lengthscale (Fig. 4), which we analyze thoroughly. We show the
existence of a family of solutions with a scale-invariance property
and based on this fact we quantify the required localized amount
of energy that triggers an extreme event. Although the existence
of a critical energy level for extreme events is certainly related to
the modulation instability, our analysis illustrates that even zero-
background-energy states can lead to an extreme event if a lo-
calized perturbation of appropriate lengthscale and intensity is
applied. These localized perturbations can occur randomly through
the dispersive propagation of waves with random relative phase.

Wehave illustrated that these extreme events are characterized
by low-dimensionality and we have use a spatially localized basis,
a Gabor basis to describe their characteristics. By performing a
statistical analysis of the Gabor coefficients we have been able to
develop an inexpensive predictive scheme that is reliable with few
false positives and false negatives. Furthermore, our scheme shows
a high degree of spatial skill and issues warnings in advance (often
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Fig. 12. Left: family of conditional densities of maximum nearby |u| given a current value of |Y0|. Right: probability of an extreme event in nearby given |Y0|.
Fig. 13. Left: spatial distribution of probability for a nearby extreme event. Right: |u| as a function of space and time. The above figure shows the spatial skill of our predictive
scheme.
Fig. 14. Spatial maximum values of |u| and extreme event probability, showing
that our predictive scheme is able to give advance warning of extreme events.

1–2 time units before the extreme event). Future research efforts
include the extension of the prediction window by combining
the presented approach with nonlinear filtering techniques [36].
We are also interested on applying the presented framework in
more realistic two dimensional nonlinear wave models and a
current research effort is focused on the wave equation by Trulsen
et al. [37]which, like theMMTmodel, includes the exact dispersion
relation for gravity waves over deep water.
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