
J. Fluid Mech. (2016), vol. 790, pp. 368–388. c© Cambridge University Press 2016
doi:10.1017/jfm.2016.13

368

Reduced-order precursors of rare events in
unidirectional nonlinear water waves

Will Cousins1 and Themistoklis P. Sapsis1,†
1Department of Mechanical Engineering, Massachusetts Institute of Technology,

77 Massachusetts Avenue, Cambridge, MA 02139, USA

(Received 14 April 2015; revised 23 November 2015; accepted 5 January 2016)

We consider the problem of short-term prediction of rare, extreme water waves in
irregular unidirectional fields, a critical topic for ocean structures and naval operations.
One possible mechanism for the occurrence of such rare, unusually intense waves is
nonlinear wave focusing. Recent results have demonstrated that random localizations
of energy, induced by the linear dispersive mixing of different harmonics, can grow
significantly due to modulation instability. Here we show how the interplay between
(i) modulation instability properties of localized wave groups and (ii) statistical
properties of wave groups that follow a given spectrum defines a critical length
scale associated with the formation of extreme events. The energy that is locally
concentrated over this length scale acts as the ‘trigger’ of nonlinear focusing for
wave groups and the formation of subsequent rare events. We use this property
to develop inexpensive, short-term predictors of large water waves, circumventing
the need for solving the governing equations. Specifically, we show that by merely
tracking the energy of the wave field over the critical length scale allows for the
robust, inexpensive prediction of the location of intense waves with a prediction
window of 25 wave periods. We demonstrate our results in numerical experiments
of unidirectional water wave fields described by the modified nonlinear Schrödinger
equation. The presented approach introduces a new paradigm for understanding and
predicting intermittent and localized events in dynamical systems characterized by
uncertainty and potentially strong nonlinear mechanisms.
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1. Introduction
Understanding and predicting large-magnitude, nonlinear water waves is one of the

most challenging topics for ocean engineering both because of the catastrophic impact
they can have on ocean engineering structures (e.g. ships and offshore platforms) and
naval operations, and because of the lack of specialized mathematical tools for
the analysis of the underlying physics (Müller, Garrett & Osborne 2005; Dysthe,
Krogstad & Müller 2008; Akhmediev & Pelinovsky 2010; Xiao et al. 2013). This
is because nonlinear water wave dynamics are characterized by the existence of
inherent uncertainty (expressed in the form of phase uncertainty between different
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Fourier modes) and in the form of strong nonlinearities and associated energy transfers
between modes. The latter can be activated locally and intermittently, leading to
unusually high-magnitude waves that emerge out of the complex background wave
field.

An extreme form of such dynamical evolution is the case of freak or rogue waves
with wave height which can be as large as eight times the standard deviation of
the surrounding wave field (Onorato et al. 2005; Dysthe et al. 2008). Waves of this
magnitude have caused considerable damage to ships, oil rigs and human life (Haver
2004; Liu 2007). In addition, many naval operations, e.g. transfer of cargo between
ships moored together in a sea base, landing on aircraft carriers, or path planning
of high-speed surface vehicles, require short-term prediction of the surrounding wave
field. To make such predictions, unusually high wave elevations must be forecasted
reliably.

One mechanism for the occurrence of such rare, unusually intense wave elevations
is nonlinear wave focusing (Onorato, Osborne & Serio 2002a; Janssen 2003; Cousins
& Sapsis 2015). For deep-water waves a manifestation of this focusing is the
well-known Benjamin–Feir (BF) instability of a plane wave to small sideband
perturbations. This instability, which has also been demonstrated experimentally
(Chabchoub, Hoffmann & Akhmediev 2011), generates huge coherent structures by
soaking up energy from the nearby field (Benjamin & Feir 1967; Zakharov 1968;
Osborne, Onorato & Serio 2000). Cousins & Sapsis (2015) demonstrated that even
imperfect background conditions, i.e. completely different from the idealized plane
wave set-up of the BF instability, can still lead to important wave focusing and rare
events. In particular, it was analytically shown and numerically demonstrated for
unidirectional wavetrains that there is a critical combination of wave group length
scales and amplitudes which will lead to wave focusing and thus unusually high
elevations. In contrast to the standard BF mechanism, these instabilities are initiated
because of sufficiently large spatially localized energy.

Such energy localization, which can ‘trigger’ nonlinear wave focusing, can occur
as the result of random relative phases between different harmonics. This phase
randomness is mainly introduced by the mixing of different harmonics due to their
linear dispersive propagation. Thus, the linear propagation of water waves can locally
create conditions that will lead to nonlinear focusing and subsequent rare events. It
is clear that this perspective provides a scenario in which the unstable extreme wave
events are isolated occurrences of strongly nonlinear focusing events initiated by the
linear or weakly nonlinear background.

Therefore, on the one hand we have the nonlinear wave mechanics that define which
localized wave groups will focus because of modulation instabilities, while on the
other hand we have the power spectrum that defines what wave groups can form
due to random phase difference between harmonics. The scope of this work is to
combine these two perspectives in order to derive precursors of rare events that will
take into account not only the nonlinear mechanics of water waves (in particular the
modulation instability) but also the spectral or statistical properties of the wave field.
In particular, we show how the interplay between (i) modulation instability properties
of localized wave groups and (ii) statistical properties of wave groups associated with
a given spectrum defines a critical length scale that is related with the occurrence of
strongly nonlinear interactions and the formation of extreme events. The energy that is
locally concentrated over this length scale acts essentially as the ‘trigger’ of nonlinear
focusing of wave groups.

We use this property to derive short-term precursors for the occurrence of large
water waves, circumventing the need for solving the governing equations. To quantify
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the probability of occurrence of specific wave groups from a given spectrum we use
a scale selection algorithm (Lindeberg 1998). This statistical analysis is combined
with an analytical nonlinear stability criterion for focusing of localized wave groups
(Cousins & Sapsis 2015) to yield a reliable, computationally inexpensive forecast
of the subsequent growth for each wave group in the field. In a second stage, we
demonstrate that merely tracking the energy of the wave field over the critical length
scale defined by the interplay between statistics and nonlinearity allows for an even
cheaper and robust forecast of upcoming intense nonlinear wave elevations, with a
prediction window of the order of 25 wave periods. We demonstrate our results in
numerical experiments involving unidirectional water wave fields described by the
modified nonlinear Schrödinger equation (MNLS).

Our proposed predictive method reveals and directly uses the low-dimensional
character of the domain of attraction of these rare water waves. In particular,
despite the distribution of the background energy over a wide range of scales,
the ‘trigger’ of nonlinear focusing is essentially low-dimensional and to this end
it can be used as an inexpensive way to estimate the probability for a rare event
in the near future. Our scheme is robust, performing well even with noise and
irregularity in the wave field. Furthermore, the presented approach introduces a new
paradigm for handling spatiotemporal rare events in dynamical systems with inherent
uncertainty by providing an efficient description of the ‘trigger’ that leads to those
rare events through the careful study of the synergistic action between uncertainty
and nonlinearity.

We stress that our method differs significantly from previously described predictive
schemes. For example, the inverse scattering approach of Islas & Schober (2005)
is, in its proposed form, limited to the nonlinear Schrödinger equation (NLS).
Our wave-group-based scheme easily applies to the more accurate MNLS where
such analytical tools are not available. Also, our scheme is similar in spirit to the
quasi-determinism (QD) theory of Boccotti (2008), which extends the observation
that profiles of large-amplitude waves resemble the autocorrelation function (Lindgren
1970; Boccotti 1983). Boccotti’s QD theory is linear and has been extended to
include second-order effects by Fedele & Tayfun (2009). Although second-order
QD agrees well with many oceanic observations, our scheme allows us to perform
prediction of rare events occurring due to nonlinear focusing effects induced by
wave–wave interactions which are associated with highly nonlinear regimes where
current analytical methods are limited.

2. Extreme events in envelope equations
In this work, we consider irregular waves travelling on the surface of a fluid

of infinite depth. A typical approach for modelling this phenomenon is to assume
incompressible, irrotational, inviscid flow, which gives Laplace’s equation for the
velocity potential. This equation is paired with two boundary conditions on the
surface: a pressure condition and a kinematic one (a particle initially on the free
surface remains so). This model agrees well with laboratory experiments (Wu, Ma
& Eatock Taylor 1998), and faithfully reproduces the classical k−5/2 spectral tail
observed in deep water (Onorato et al. 2002b). Although some care is required to
deal numerically with the free surface, this fully nonlinear model may be solved
numerically with reasonable computational effort, particularly in one space dimension
(Dommermuth & Yue 1987; Craig & Sulem 1993; Dyachenko et al. 1996; Choi &
Camassa 1999). However, the presence of the free surface makes analysis of the
underlying dynamics challenging.
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Here we consider approximate equations governing the evolution of the wave
envelope, the NLS (Zakharov 1968) and the MNLS of (Dysthe 1979). Both NLS
and MNLS can be derived via a perturbation approach from the fully nonlinear
model under assumptions of small steepness and slow variation of the wave envelope.
Although forms of these equations exist in a full two-dimensional setting, here we
consider wave fields varying only in the direction of propagation. The NLS, in
non-dimensionalized coordinates, reads
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2
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2
|u|2u= 0, (2.1)

where u(x, t) is the wave envelope. To leading order the surface elevation is given by
η(x, t) = Re[u(x, t)ei(x−t)]. Equation (2.1) has been non-dimensionalized with x = k0x̃,
t=ω0 t̃ and u= k0ũ, where x̃, t̃ and ũ are physical space, time and envelope, k0 is the
dominant spatial frequency of the surface elevation and ω0 =√gk0.

Our primary interest in this work is the MNLS, which is a higher-order approxima-
tion of the fully nonlinear model,
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where φ is the velocity potential and ∂φ/∂x|z=0 = −F−1[|k|F [|u|2]]/2, and F
denotes the Fourier transform. The MNLS has been shown to reproduce laboratory
experiments reasonably well (Lo & Mei 1985; Goullet & Choi 2011). There are
even higher-order envelope equations, such as the broadband modified nonlinear
Schrödinger equation (BMNLS) (Trulsen & Dysthe 1996) as well as the more recent
compact Zakharov equation (Dyachenko & Zakharov 2011). The latter is valid for
third-order nonlinearities and it does not have restrictions on the spectral bandwidth
(Fedele 2014). However, we do not discuss these equations here. Although there are
considerable differences between NLS and MNLS, we found minimal differences
between simulations of MNLS and BMNLS. Dysthe et al. (2003) also found similar
agreement between MNLS and BMNLS.

These envelope equations, as well as the fully nonlinear water wave model,
admit periodic plane wave solutions. Interestingly, these plane wave solutions are
unstable to sideband perturbations (Benjamin & Feir 1967; see also Zakharov 1968),
a phenomenon termed the BF instability. This instability has a striking manifestation.
Energy is ‘sucked up’ from the nearby field to produce a large-amplitude coherent
structure, containing a wave 2.4–3 times larger than the surrounding background
field (Osborne et al. 2000). This behaviour has been shown numerically in envelope
equations (Yuen & Fergusen 1978; Dysthe & Trulsen 1999) as well as in the fully
nonlinear formulation (Henderson, Peregrine & Dold 1999). Furthermore, a number
of experiments confirm these numerical predictions (Chabchoub et al. 2011, 2012).

However, in realistic physical settings, the water surface is not merely a plane wave
– energy is distributed over a range of frequencies. To this end, we consider extreme
waves emerging out of a background with Gaussian spectra and random phases,
that is

u(x, 0)=
N/2∑
−N/2+1

√
2∆kF(k∆k) ei(ωkx+ξk), F(k)= ε2
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, (2.3a,b)
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FIGURE 1. (Colour online) Large-amplitude coherent structures (b), which emerge via
focusing of a localized wave group (a).

where ξk are independent, uniformly distributed random phases. Here we adopt the
definition of an extreme wave as any instance where |u| > HE = 4ε (as defined
above, ε is the standard deviation of the surface elevation). In these irregular wave
fields, it is well known that the critical quantity for extreme event formation is the
Benjamin–Feir index (BFI), which is the ratio of the energy level of the field to its
bandwidth (Janssen 2003). If the BFI is large enough, then nonlinear interactions
dominate, leading to the appearance of large-amplitude coherent structures and
heavy-tailed statistics for the elevation (Alber 1978; Crawford, Saffman & Yuen
1980; Dysthe et al. 2003; Janssen 2003; Onorato et al. 2005).

We solve the MNLS numerically using a Fourier method in space. The use of
periodic boundary conditions is of course artificial, but is a standard convention. We
take our spatial domain to be 128 wavelengths (256π), large enough to avoid any
box-size effects. We use a fourth-order Runge–Kutta exponential time differencing
scheme (Cox & Matthews 2002; Grooms & Majda 2014). This scheme requires
evaluation of the function φ(z)= (ez − 1)/z. Naive computation of φ can suffer from
numerical cancellation error for small z (Kassam & Trefethen 2005). We use a Padé
approximation code from the EXPINT software package, which does not suffer from
such errors (Berland, Skaflestad & Wright 2007). We use 210 Fourier modes with a
time step of 0.025; results in this work were insensitive to further refinement in grid
size.

3. Localized wave group evolution
A large BFI indicates that the extreme events are more likely than Gaussian

statistics would suggest. However, the BFI does not provide any specific information
on precisely where an extreme event will occur. Thus, in order to develop a scheme
providing precise spatiotemporal predictions we must develop a more precise indicator
than the BFI. In high-BFI seas, extreme events are triggered by the nonlinear focusing
of localized wave groups (Fedele 2008). Figure 1 displays such an example of extreme
event formation by focusing of localized groups. In this case we see that a localized
group focuses, narrowing in width and doubling in amplitude, yielding an extreme
event.

To better understand this mechanism, in Cousins & Sapsis (2015) we studied the
evolution of isolated wave groups. We review these results describing the evolution
of hyperbolic secant initial data:

u(x, 0)= A sech(x/L). (3.1)

For the NLS on zero background, this family of envelopes gives rise to the Satsuma–
Yajima breathers that have been observed experimentally in the context of NLS and
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MNLS (Chabchoub et al. 2013). Owing to the invariance of the envelope equations
we take A real with no loss of generality. We investigate the evolution of such groups
as a function of amplitude A and length scale L. In particular, we are interested in
whether or not a group will focus and, if it does, the degree by which the group
amplitude is magnified.

We emphasize the difference between the instability occurring due to initially
localized energy (and zero background) and the classical modulation instability of
plain waves. Specifically, in the classical BF instability the aim is to understand
when and how energy is transferred from the background wavetrain to a localized
wave group that has the form of a breather solution. In this case the conditions of
occurrence and length scale of the instability depend on the amplitude of the plane
wave. However, for our study assuming a perfect plane wave as background reservoir
of energy is not realistic. It is rather more rational to understand if and how energy
is transferred from an already localized wave group to smaller scales, resulting in
rare events. These localized wave groups are the result of random phases between
harmonics caused by linear dispersion. To this end we will focus our attention on
the modulation instability properties of individual and isolated wave groups. Similar
questions were asked by Adcock et al. in the context of the one-dimensional NLS
(Adcock & Taylor 2009) as well as NLS and the fully nonlinear model in two
dimensions (Adcock, Gibbs & Taylor 2012).

To answer these questions, we numerically evolve hyperbolic secant initial data for
many values of A and L for NLS and MNLS. To measure the degree of focusing that
a group undergoes, we computed the value of the first spatiotemporal local maximum
of |u|, and termed this value umax(A,L). For a defocusing group, however (figure 2c,d),
this local maximum will occur at x= 0, t= 0 and we trivially have umax(A,L)=A. For
a focusing group (figure 2e,f ), the group will contract and increase in amplitude. The
group amplitude will eventually reach a maximum and then demodulate, decreasing
in amplitude. To make the focusing behaviour clear, in figure 2(a,b) we plot the
amplitude growth factor (1/A)umax(A, L) for NLS (a) and MNLS (b). This amplitude
growth factor describes the degree of focusing that has occurred, with a value of 1
indicating that the group does not grow in amplitude.

We observe that, for both NLS and MNLS, there is a range of groups that focus
considerably. However, there are stark differences between group evolution in the two
equations owing to the lack of scale invariance in the MNLS. In MNLS, the set of
focusing groups is smaller compared with NLS, and many groups that do focus do
so to a smaller degree (see example in figure 2e,f ). Particularly, in MNLS there is
a smallest focusing length scale where groups thinner than this scale do not focus,
regardless of how large their initial amplitude may be. The scale invariance of NLS,
however, precludes such behaviour. A similar lack of focusing behaviour at small
group length scales was observed by Henderson et al. in numerical simulations of the
fully nonlinear model in one space dimension (Henderson et al. 1999).

The presented modulation instability analysis of localized wave groups will be
the first ingredient for the derivation of precursors of rare wave events. It provides
information about the wave groups that can lead to rare events because of nonlinear
focusing effects but it does not provide information about the likelihood of such
wave groups. This information will be extracted using a statistical analysis from the
spectrum of the wave field.

4. Probability of critical wave groups in irregular wave fields
In a particular sea state, dispersion effects create random mixing of different

harmonics. To this end, all groups do not occur with equal likelihood – the probability
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FIGURE 2. (Colour online) Amplitude growth factors for localized groups in NLS (a) and
MNLS (b). Examples of defocusing, amplitude-decreasing groups for NLS (c) and MNLS
(d). Examples of focusing, amplitude-increasing groups for NLS (e) and MNLS ( f ). The
initial conditions for the simulations displayed in (e) and ( f ) are identical. Although both
groups focus, the amplitude grows considerably less in MNLS than in NLS.

of a particular group occurring is determined by the spectral properties of the field.
For example, in a Gaussian spectrum the spatial field will contain groups unlikely
to focus if the energy level ε is small (low-amplitude groups) or if the spectral
bandwidth σ is large (small-length-scale groups). Thus, the frequency and nature
of the unstable wave groups in a particular field results from the interplay of the
nonlinear dynamical properties of the system (expressed as modulation instabilities of
wave groups) and the statistical properties of the background field (expressed by the
spectrum).

We now describe a computational procedure to quantify for any given spectrum the
probability of occurrence of a wave group of a given amplitude and length scale. To
compute this probability density function we use an ensemble approach. Using the
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FIGURE 3. (Colour online) (a) Dominant wave groups (red, dashed) determined by
applying the group detection algorithm to the field |u(x)| (blue, solid). (b,c) Joint density
of wave group amplitude and length scale (b); length scale density for extreme ‘triggering’
groups (c), BFI = 1.4, ε = 0.05, σ = 0.1. (d,e) The same, but for BFI = 1.4, ε = 0.1,
σ = 0.2. In each joint density plot we overlay the curve that separates groups that would
focus (if isolated) to form extreme events: NLS curve is black, solid; MNLS curve is red,
dashed.

random phase model (2.3) we generate realizations that follow the given spectrum.
For each realization we use a scale selection algorithm to identify coherent wave
groups as well as their associated length scales and amplitudes (see appendix A for
details on the scale selection algorithm). In figure 3(a), we display an example of
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such a random realization field |u(x)| as well as the groups identified by the group
detection algorithm, showing that this algorithm appropriately picks out the dominant
groups. We then compute the joint probability density of group amplitude and length
scale by applying this group identification algorithm to 50 000 realizations of Gaussian
spectrum random fields.

The described step has very low computational cost since it does not involve
the numerical solution of dynamical equations but only the statistical analysis
of wave realizations that follow a given spectrum. It is the second ingredient,
the statistical component of our analysis, which we will now combine with the
modulation instability analysis of localized wave groups presented in the previous
section. More specifically, using the analysis for the evolution of localized wave
groups, we determine, for each length scale L, the smallest group amplitude required
to ‘trigger’ an extreme event. That is, if the extreme event threshold is HE = 4ε, we
find, for each L, the smallest A such that umax(A, L)>HE. Denoting this amplitude as
A∗, we trivially have A∗6HE. This procedure describes a curve A∗(L), where isolated
groups located above this curve in the (L, A) plane would yield an extreme event,
and those below this curve would not. Note that wave groups with sufficiently small
initial length scales L will never undergo nonlinear focusing. For these length scales
the only wave groups that can reach amplitudes as large as HE are the ones that start
with A∗(L)=HE. This observation explains the plateau that occurs for small L.

In figure 3 we overlay this curve (which expresses dynamical properties of nonlinear
wave groups) over the joint density of group amplitude and length scale (which
expresses statistical properties of the wave spectrum). For a given spectrum, we may
determine the frequency and nature of extreme event triggering groups (i.e. those
lying above the respective curves in figure 3). As expected, increasing the energy
level or decreasing the spectral bandwidth increases the number of these extreme
triggering groups. This analysis provides a concrete, wave-group-based explanation
of the development of heavy tails via nonlinear interactions in high-BFI regimes.
However, unlike traditional BFI-based analysis, this wave group analysis directly
incorporates the lack of scale invariance in MNLS. This is clear from figure 3(b–e)
where we display (A, L) densities for two different spectra with the same BFI. We
note the scale invariance property of NLS (note that the two black curves are identical,
albeit the axes rescale) and how this contrasts with the corresponding curves (red
dashed lines) for the MNLS, which change between the two spectra even though the
BFI index remains the same.

The main benefit of this statistical instability analysis allows us to characterize
the properties of extreme event triggering groups in a maximum likelihood sense.
Specifically, for a given spectrum, we can compute the density of the length scale
of groups that would generate extreme events (i.e. those lying above the curves of
figure 3b,d). In figure 3(c,e) we display examples of these length scale densities for
the two different spectra. The concentration of these densities around their peak value
suggests that for a given spectrum there is a most likely extreme event triggering
length scale, LE. As the distribution is fairly narrow, we expect that the majority of
extreme events that occur will be triggered by localization at length scales close to
LE. In § 5, we will use this fact to develop a predictive scheme based on projecting
the field onto an appropriately tuned set of Gabor wavelets.

5. Precursors of extreme events
In this section, we describe the central result of this paper, which is the derivation of

precursors for extreme events in nonlinear water waves. These precursors allow for the
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detection of instabilities at their very early stages and therefore lead to the prediction
of rare events without the need to solve the full envelope equations.

We describe two precursor forms. First, we develop an algorithm to predict extreme
events by identifying the dominant wave groups in a given field, and use our results
from § 3 regarding localized groups that can ‘trigger’ an extreme event. Second, we
develop a scheme based on projecting the field onto a carefully tuned set of Gabor
modes. We find that large values of a certain Gabor coefficient indicate that an
upcoming extreme event is likely. This Gabor-based scheme is nearly as reliable as
the group detection scheme, yet requires a remarkably smaller computational cost.

5.1. Prediction by wave group identification
Here we describe a straightforward scheme for advance prediction of extreme events
via wave group identification. For a given wave field, we apply the group identification
algorithm described in appendix A to the envelope. This gives the spatial location,
amplitude A and length scale L of each wave group. We then predict the future
focused amplitude of the group by evaluating umax(A,L), where umax is the numerically
constructed function from our prior study of localized groups in § 3. If umax(A,L) is at
least 95 % of the extreme event threshold HE, then we predict that an extreme event
will occur. We choose this conservative prediction threshold in order to minimize the
number of false negatives (extreme events that we fail to predict).

In figure 4, we display an example output of our predictive scheme for a simulation
of MNLS with initial conditions generated via a Gaussian spectrum with random
phases (ε = 0.05, σ = 0.1, BFI = 1.4, HE = 0.2). We display the spatial dependence
of the surface elevation for three different values of time. In this simulation, the
surface elevation first exceeds HE around t = 200 near x= 300. After exceeding this
threshold, the extreme event continues to focus, eventually reaching a maximum of
approximately 0.3 at t≈ 385, x≈ 390 (figure 4c).

We highlight each wave group with a rectangle whose height is equal to the
predicted focused amplitude of the group, with a red coloured rectangle indicating
that we predict that the group will focus to form an extreme event. Our scheme
identifies the group that will ‘trigger’ the extreme event far in advance. The initial
prediction occurs at the beginning of the simulation at t = 0, 200 time units (≈32
temporal wave periods) before the elevation crosses the extreme event threshold
HE = 0.2, and nearly 400 time units before the extreme event reaches its maximal
amplitude. Perhaps most importantly, the prediction occurs while the elevation is at
the relatively modest value of 0.147.

Also, our scheme accurately gives the spatiotemporal location where the extreme
event will occur. The group that we predict will focus to an extreme event (red
rectangle in figure 4a) has a length scale of 10.3 and amplitude of 0.147. In MNLS,
a localized hyperbolic secant initial profile with these characteristics will focus to a
maximum amplitude of 0.264 after 351 time units, meaning that our scheme predicts
a wave of this amplitude at t= 351, x= 361. To predict this spatial location we use
the linear group velocity and the fact that the group is located at x = 185 initially.
This agrees well with the observed dynamics of the simulation of the full field using
MNLS – the identified group focuses to an actual maximum of 0.289.

To test the reliability of this scheme, we implemented it on 100 simulations each
of NLS and MNLS with BFI = 1.4 (see appendix A for details on these simulations).
Here we only discuss the MNLS results, as the NLS results are similar and MNLS
is the more physically relevant equation. In these 100 simulations, there were 336
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FIGURE 4. (Colour online) (a) Initial conditions for a simulation of MNLS, t = 0. Our
scheme identifies a group around x = 190 which we predict will grow to form a large
extreme event. (b) Group in initial stages of focusing, t= 202.5, which breaks the extreme
event threshold HE = 0.2 near x= 290. (c) Group is fully focused, t= 384.5, and attains
its maximum amplitude near x= 390.

extreme events. We predicted all of these extreme events in advance – there were no
false negatives. There were 91 instances where we predicted an extreme event but one
did not occur, giving a false positive rate of 21.3 %. For our correct predictions, the
average warning time (the amount of time before the prediction began and the onset
of the extreme event) was 153 time units (≈24 temporal wave periods).

Our scheme has value beyond a binary predictor of extreme events. In figure 5(a),
we display a scatter plot showing the relationship between the predicted future
amplitude and the actual future amplitude of the wave field. We observe that our
predictor reliably estimates the future amplitude in a continuous sense. In addition to
predicting when an upcoming extreme event is likely, our scheme predicts when a
particularly large extreme event is upcoming.
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FIGURE 5. (Colour online) (a) Scatter plot of predicted versus actual amplitudes as well
as the line predicted = actual (red). Note that the vertical dashed line is located at 0.95HE
to reduce false negatives (as discussed in the text). (b) Spatiotemporal dependence of |u|
(red) and predicted future amplitude (blue).

To further illustrate the skill of our scheme, in figure 5(b), we plot the surface
|u(x, t)| in red, as well as the predicted future group shape in blue. The field displayed
here is the same field displayed in figure 4 in a coordinate frame moving with the
linear group velocity. The surface plots in figure 5 provide a visualization of the skill
of our scheme in predicting the future amplitude of the extreme wave, as well as the
spatial location at which it will occur. The blue surface near the extreme event decays
and vanishes around t=200 because we locally turn off the predictor while an extreme
event is occurring (|u|>HE).

5.2. Prediction by Gabor projection

We now describe an alternative reliable prediction scheme that requires negligible
computational cost. In this scheme, we predict upcoming extreme events by projecting
the field onto a set of carefully tuned Gabor modes. This approach is similar in spirit
to our extreme event predictive scheme for the model of Majda, McLaughlin and
Tabak (MMT) (Cousins & Sapsis 2014). This projection requires only a single
convolution integral, so its computation is extremely cheap. Even at this low cost,
this scheme reliably predicts upcoming extreme events with spatiotemporal skill.

As we showed in § 3, for a given spectrum we can compute the joint density of
wave group amplitude and length scale. Using our study of isolated localized groups,
we can then compute the conditional density of wave group properties for groups
that will ‘trigger’ extreme events. This gives the density of group length scales
for groups that would focus to form an extreme event (refer to figure 3c,e). From
this, we can compute the spatial length scale LG with the maximum likelihood of
‘triggering’ an extreme event. Owing to the narrowness of the distribution of extreme
event triggering group length scales, we expect that extreme events will be preceded
by energy localization at a length scale close to LG.

To predict extreme events, we estimate the energy concentrated in scale LG.
To do so, we ‘project’ the field onto the set of Gabor basis functions vn(x; xc),
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FIGURE 6. (Colour online) (a) Family of conditional densities of current |Y0| and future
|u|, corresponding to (5.3). (b) Probability of upcoming extreme event as a function
of |Y0|.

complex exponentials multiplied by a Gaussian window function. This gives the
Gabor coefficients Yn(xc, t):

vn(x; xc)= eiπn(x−xC)/LGe−(x−xC)
2/2L2

G, (5.1)
Yn(xc, t)= 〈u(x, t), vn(x; xc)〉/〈vn(x; xc), vn(x; xc)〉. (5.2)

We claim that a large value of Y0 at a spatial point xc indicates that an extreme event
is likely in the future near xc in space (in a frame moving with the group velocity).
To confirm this, we compute the following family of conditional distributions.

FY0(U ),P

 max
|x∗−xc|<LG

t∗∈[t+tA,t+tB]
|u(x∗, t∗)|>U

∣∣∣∣ |Y0(xc, t)| =Y0

 . (5.3)

That is, given a particular current value of Y0, we examine what are the statistics of
the envelope u in the future. Here we choose tA = 50 and tB = 350 from the time
required for a group of length scale of LG to focus to form an extreme event. We
compute the statistics (5.3) from 200 simulations of NLS/MNLS with Gaussian spectra
and random phases with ε = 0.05, σ = 0.1 and BFI= 1.4.

In figure 6(a), we display the family of conditional densities of future |u| for a
range of values of |Y0|. These densities show that, when |Y0| is large, |u| is essentially
guaranteed to be large in the future. From these conditional statistics, we compute
the probability of an upcoming extreme event PEE as a function of current Y0 by
integrating over (HE,∞). This function is displayed in figure 6(b). Probability PEE
has a sigmoidal dependence on Y0: if Y0 is large enough then an upcoming extreme
event is nearly guaranteed, while if Y0 is small enough then an upcoming extreme
event is highly unlikely.

Our predictor Y0 becomes large distinctly before the extreme event occurs. The
conditional statistics shown in figure 6 pair a value of Y0 with a maximum value of |u|
which occurs at least tA = 50 time units in the future. To further illustrate this point,
we statistically investigate the energy exchanges between the various Gabor modes. To
do so, we compute the statistics of the Gabor coefficients during, before and far from
an extreme event. We display these Gabor statistics in figure 7. We see that, away
from extreme events, we have nearly Gaussian statistics for the coefficients. In this
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regime the coefficients also appear to be uncorrelated. Before an extreme event, the
coefficients are larger – in particular Y0 is quite large. During an extreme event, Y0
is on average smaller than before extremes (see figure 7d). In the formation of the
extreme events, Y0 decreases by transferring energy to Y1, which is largest during the
extreme events. During the extreme events, the Gabor coefficients are also strongly
correlated (figure 7a) presenting essentially non-Gaussian behaviour.

For reference we compare the marginal statistics of Y0 computed previously with
MNLS with the corresponding linear equation, i.e. MNLS with the same parameters
but without nonlinear terms (figure 8). We find that in the linear case rare events are
also preceded by large Gabor coefficients Y0, which follow an essentially non-Gaussian
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FIGURE 9. (Colour online) Surface elevation (blue) and probability of upcoming extreme
event (red) for (a) time t= 0, (b) time t= 202.5 and (c) time t= 384.5 at which maximum
elevation attained.

distribution. However, in this case Y0 is much larger compared with the nonlinear case
since the amount of amplification is much smaller (due to the absence of modulation
instability). This implies that in both the linear and nonlinear wave models, extreme
events are preceded by localized wave groups. This is an important property that
can lead to rare event prediction for weakly nonlinear wave fields where modulation
instability is not relevant.

To predict extreme events, we first compute Y0 by convolving the field u with
a Gaussian with the length scale LG tuned to the particular spectrum. After
computing Y0, we then compute the probability of an upcoming extreme event
via our pre-computed conditional statistics (figure 6b). We predict that an extreme
event will occur if PEE > P∗, where P∗ is a threshold probability that we choose.
Choosing a large P∗ will result in few false positives and many false negatives, while
choosing a small P∗ will result in few false negatives and many false positives. We
choose P∗ = 0.5 as it gives a low rate of false negatives (meaning we predict almost
all extreme events) with a reasonably low false positive rate.

In figure 9, we display the output of the Gabor predictive scheme applied to
an example extreme event in a simulation of MNLS (this is the same example we
investigated for the group detection-based predictive scheme in figure 4). The extreme
event that occurs at x ≈ 390, t ≈ 385 is predicted from the initial conditions by our
Gabor-based predictive scheme, with a high level of confidence (PEE = 0.965). This
prediction occurs 200 time units (32 wave periods) before the amplitude exceeds HE,
and 385 time units (61 wave periods) before the maximally focused amplitude. The
spatial location of the upcoming extreme event (in a moving coordinate frame) is
predicted with very good accuracy as well.

To assess the reliability of this scheme, we tested it on the 100 MNLS simulations
used to test the group detection-based scheme in the previous section. None of these
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Predictive Extreme False False Average
scheme events negative positive warning time

Gaussian spectrum (ε = 0.05, σ = 0.1)

Gabor 336 20 (5.9 %) 108 (25.5 %) 245 (39 periods)
Group detection 336 0 91 (21.3 %) 153 (24 periods)

Gaussian spectrum (ε = 0.05, σ = 0.2)

Gabor 342 29 (8.5 %) 121 (26.1 %) 193 (31 periods)
Group detection 342 7 (2.0 %) 111 (24.5 %) 74 (12 periods)

JONSWAP spectrum

Gabor 383 7 (1.8 %) 139 (27.0 %) 237 (38 periods)
Group detection 383 14 (3.7 %) 115 (23.1 %) 70 (11 periods)

TABLE 1. Performance of Gabor and group detection prediction schemes on 100
simulations of MNLS.

simulations were used to generate the conditional statistics in figure 6. We give data
describing the performance of both predictive schemes in table 1. The Gabor scheme
predicted 316 of the 336 extreme events, giving a low false negative rate of 5.9 %.
There were 108 instances where the Gabor scheme predicted an extreme event but
one did not occur, giving a false positive rate of 25.5 %. Thus, the Gabor scheme has
a slightly higher false positive/negative rate compared with the group detection scheme
but overall it performs nearly as well while requiring extremely little computational
effort. Additionally, the average warning time for the Gabor scheme was larger than
the group detection scheme (245 versus 153 time units, 39 versus 24 temporal wave
periods).

We tested both prediction algorithms using a Gaussian spectrum with wider
characteristics (ε = 0.05, σ = 0.2), as well as a JONSWAP spectrum given by

S(k)= α

2k3
exp(−(3/2)[k0/k]2)γ exp[−(√k−√k0)

2/2δ2k0], (5.4)

where δ= 0.07 for k6 k0, and δ= 0.09 for k> k0. For the JONSWAP spectrum we set
γ =6 and choose α so that the significant wave height is 0.2. The results are presented
in table 1 and indicate the robustness properties of both predictive schemes.

6. Discussion
We study and quantify how energy localization (induced by the linear dispersive

mixing of waves) and strong local nonlinearity (having the form of modulation
instability of localized wave groups) interact, resulting in the ‘triggering’ of extreme
waves. Based on this analysis, we have developed two methods to derive precursors
of rare events in nonlinear waves. The first method relies on the prediction by a
wave group identification method. Specifically, we combined (i) nonlinear modulation
instability results that quantify the focusing of localized wave groups and (ii) a scale
selection algorithm that detects wave groups that satisfy this localized stability
criterion. This scheme allows us to detect efficiently, and without solving the
governing equations, wave groups having high probability of ‘triggering’ an extreme
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wave. Most importantly, the developed precursor can foresee an extreme event before
the amplitude of the wave field becomes important.

The second method relies on the tracking of energy localized over a critical length
scale. We used the scale selection algorithm to quantify, for a given wave spectrum,
the probability of the formation of critical wave groups that can evolve into rare
events. This analysis revealed a spatial length scale where important energy has the
highest likelihood to ‘trigger’ a rare event. Based on this result, we formulated an even
simpler predictor relying on the Gabor transform, which locally tracks the energy of
the wave field over the critical length scale. We applied the two predictive schemes in
the MNLS to forecast rare events in directional water waves. Both precursors reliably
predicted rogues in advance. Most importantly, this prediction was robust against noise
in the background field, allowing for reliable forecast of, on average, 12–39 wave
periods before the occurrence of an extreme wave, depending on the initial spectrum.

Note that, although we considered (for demonstration purposes) unidirectional
deep-water waves, where heavy tails are more prominent, there are no constraints
for the presented theory to be applied in other set-ups involving the occurrence of
rare events due to dynamical instabilities. Indeed, heavy-tailed statistics is not a strict
requirement for our scheme. The presented approach introduces a new paradigm
for understanding and inexpensively predicting intermittent and localized events in
general dynamical systems where we have an interplay between uncertainty and
nonlinearity. For such systems previous analytical studies have mainly focused on the
quantification aspects of rare event statistics through the use of a generalized Pareto
distribution (see e.g. Lucarini, Faranda & Wouters 2012; Lucarini et al. 2014). As
our approach uses minimal analytical tools, we believe it may be utilized for both
prediction and statistical quantification in settings where the dynamics are exceedingly
complicated or entirely unknown (requiring a data-driven approach).

In the future, we plan to examine precursors of rare events for two-dimensional
water waves, waves in regions with variable bathymetry, as well as waves in crossing
seas. Deriving inexpensive precursors of strongly nonlinear instabilities will allow
for the improvement of direct numerical methods (see e.g. Alam 2014; Clauss
et al. 2014) for short-term prediction of the wave field evolution through the use
of adaptive resolution techniques. To this end, we plan to combine the presented
precursors with existing prediction schemes formulated for linear and weakly nonlinear
equations in order to improve their efficiency by placing more computational effort
in spatiotemporal regimes where strongly nonlinear interactions are expected.
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Appendix A. Scale selection algorithm
Here we describe the wave group detection algorithm used in the prediction scheme

discussed in § 5.1. To find the dominant wave groups in a given irregular wave field,
we look for Gaussian-like ‘blobs’ in |u(x)|. To find these blobs, we use an existing
algorithm based on the scale-normalized derivatives of |u| (Koenderink 1984; Witkin
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1984; Lindeberg 1998). These scale-normalized derivatives, s(m), are normalized spatial
derivatives of the convolution of |u| with the heat kernel,

s(m)(x, L)= Lm/2 ∂
m

∂xm
( f ∗ g), (A 1)

where g(x, L) is the heat kernel,

g(x, L)= 1√
2πL

e−x2/2L. (A 2)

In the above, x is the spatial variable and L is the length scale variable. Following
Lindeberg (1998) we choose m= 2 for optimal blob detection.

We illustrate this approach by computing the scale-normalized derivatives of a single
Gaussian: u(x)=Ae−x2/2L2

0 . It is straightforward to show that s(2) has a local minimum
at x=0, L=2L2

0. In an arbitrary field |u|, we similarly find wave groups by computing
s(2) and subsequently find the local minima. If we find a local minima at (xC, L∗),
we conclude that there is a wave group at x= xC having a length scale

√
L∗/2. We

determine the amplitude of the wave group, A, by computing the local maxima of |u|
near xC.

In some instances, scale space extrema do not correspond to actual wave groups.
Consider u(x)= e−x2/2L2

0 − e−x2/2L2
1 , where L1 = 0.8L0, displayed in figure 10(a). There

are two distinct peaks, which the scale selector detects. However, there is an additional
local minimum of s(2) near x = 0 that does not correspond to a wave group. To
eliminate such false positives, for each local minimum of s2, we compute the quantity
C, which measures how close u is to a Gaussian-like blob:

C= 1− ‖ f (x)− Ae−(x−xC)
2/2(L∗)2‖2

‖ Ae−(x−xC)2/2(L∗)2‖2
. (A 3)

If |u| is an exact Gaussian, then C is 1. Thus, we take small values of C as evidence
that the local minimum of s(2) do not correspond to a wave group. In the two-humped
case displayed in figure 10, the two local minima around x = −1, 1 have C ≈ 0.9,
while C ≈ 0.5 at x = 0. In practice, we ignore local minima of s(2) where C < 0.75.
An example output of the scale selection algorithm with this criterion applied to an
irregular wave field is displayed in figure 3(a). We see that the algorithm successfully
identifies the dominant wave group in the field.

To compute the local minima of s(2), we first generate initial guesses for the minima
by computing s(2) on a grid with Nx,SS spatial points and NL points in the length scale
dimension. We then refine the local minima of the grid-evaluated s(2) by Newton’s
method. For a particular length scale value L, computation of s(2)(·, L) requires two
fast Fourier transforms. Thus, the cost is O(NLNx,SS log Nx,SS). We have found that a
relatively small NL is adequate to generate reliable initial guesses for the minima (we
use NL = 20).

For the Newton iteration, we compute the gradient and Hessian of s(2) analytically
(these analytic expressions do contain integral terms, which we evaluate numerically).
For each wave group, we refine (xC, L) to five digits of precision, which requires no
more than three Newton iterations in almost all cases. Note that, compared to the grid
computation of s(2), the cost of the Newton iterations is low. The reason for this is
that at each iteration the gradient and Hessian of s(2) need only be calculated at a
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FIGURE 10. (Colour online) (a) Plot of double-humped field |u| and the groups identified
via the scale selection algorithm. (b) Negative part of s(2)(x, L). The extremum at
x= 0,

√
L/2= 2 is eliminated via the procedure described in the text.

single point. This means that the associated integration is only over a small subset of
the full spatial domain.

Prediction via this scale selection algorithm is considerably cheaper than solving the
envelope partial differential equation (PDE). In the example considered in § 5.1, we
predict an extreme event 200 time units in advance using the scale-selection-based
algorithm. Evolving the field this many time units with the PDE would require
thousands of time steps, each costing O(Nx,PDE log Nx,PDE) to compute the nonlinear
terms, where Nx,PDE is the number of spatial grid points in the numerical PDE
solver. By contrast, the scale selection algorithm only requires NL = 20 evaluations
of s(2)(·, L), with each evaluation of s(2)(·, L) requiring O(Nx,SS log Nx,SS) operations.
To accurately resolve the small-scale dynamics and the nonlinear terms, Nx,PDE must
be considerably greater than Nx,SS, which demonstrates clearly the computational gain
of the proposed approach (for the considered setting we found that Nx,SS can be 16
times smaller than Nx,PDE with no loss of reliability).
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